Bibliography Self-diffusion and impurity diffusion in oxides

R. FREER

Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh, UK

An updated bibliography of diffusion data in oxides is provided for the materials scientist who requires a convenient source of published results. The scope of the review has been enlarged to include data for the diffusion of the host and impurity species in both binary and multiple oxides. Brief descriptions of terminology, diffusional behaviour and new measurement techniques are followed by tables of selected results and associated experimental details.

1. Introduction

Diffusion is believed to be the rate determining step in many processes of interest to the materials scientist. These include creep, sintering, annealing of radiation damage [1, 2], and the formation and ageing of protective oxide coatings on metals [3,4]. The movement of impurity species from the surface into the body of ceramics and machine components is of great industrial importance since the diffusion results in their degradation, e.g. sulphur in turbine blades, chloride in metals [2] and various ions in furnace elements [5].

Although the transport properties of the alkali halides are thought to be reasonably well understood [6], the same cannot be said of oxides, where there is as yet only limited data for crystals of the highest quality and purity, and the agreement with theory is comparatively poor, e.g. MgO [7]. In order to provide the materials scientist with a source of self-diffusion data for simple oxides, Harrop [1] produced a bibliography which covered studies up to 1967. Since that time a considerable number of good-quality data have become available and this review is an attempt to update the earlier publication [1]. The scope of the present work has been extended to include results for the diffusion of impurity species.

The bibliography of diffusion data for binary and multiple oxides is preceded by brief details of terminology, diffusional behaviour and new measurement techniques.

2. Diffusion in oxides

Diffusion in a crystalline solid proceeds as ions (or atoms, or molecules) migrate via lattice defects which may be generated either thermally or by the presence of impurities [8]. There are a variety of possible diffusion mechanisms [9] of which vacancy and interstitial are the most common. Identification of the individual process is, however, not easy. Isotope mass effect studies are one approach and these have been performed on several oxides [10]. Such work is beyond the scope of the present review and the detailed mechanisms will not be considered further.

A number of diffusion coefficients (D) are encountered in the literature for oxides, and it is helpful to differentiate between them: self-diffusion is the movement of the host (metal or oxygen) ions, whilst impurity diffusion is the transport of any species other than the host in the crystal. In these cases the moving ions may be at any concentration. Tracer diffusion refers to either self- or impurity diffusion when the species of interest is at infinitely small dilution. At any temperature the tracer diffusion coefficient (D^*) is assumed to be constant, and independent of tracer composition (although this is not always the case [11]).

Interdiffusion is the process by which two adjacent solids (lamellae or single crystals) of differing compositions homogenize by the mutual diffusion of species across the common boundary.

Figure 1 Temperature dependence of diffusion coefficients, showing a series of diffusion regimes with different activation energies.

The interdiffusion coefficient (\widetilde{D}) is compositiondependent.

Tracer (D^*) and interdiffusion coefficients (D) for a binary pair (A, B) are related by Darken's equation [12]

$$\widetilde{D}_{AB} = (D^*_A x_B + D^*_B x_A)S \qquad (1)$$

where S is a complex term involving the chemical activities of x_i , the mole fractions of the components.

The term "chemical diffusion coefficient" (also denoted by \widetilde{D}) is employed to describe the homogenization process as a binary crystal changes from one non-stoichiometric composition to another, e.g. CoO [13]. For the remainder of this section no distinction will be made between the diffusion coefficients, and the following arguments apply to all forms of D.

The diffusion of any species is characterized by its diffusion coefficient $D(m^2 \sec^{-1})$, and its temperature dependence (Fig. 1) is best described by an Arrhenius equation of the form

$$D = D_0 \exp\left(-Q/RT\right), \qquad (2)$$

where D_0 is the pre-exponential factor (m²sec⁻¹), Q the activation energy (kJ mol⁻¹) and R the gas constant. Unfortunately, much of the data cited in this work was originally reported in different units, namely cm²sec⁻¹ for D and D_0 , and kcal mol⁻¹ for Q. Occasionally, electron volts (eV)^{*} were used for the latter quantity, in which case it is necessary to replace R in Equation 2 by k, Boltzmann's constant.

Plots of $\log_e D$ against 1/T may be linear over much of the measured range (Fig. 1), but at the higher temperatures, the slope and hence Q may increase as different diffusion regimes are reached. It is, therefore, dangerous to extrapolate data to temperatures outside the range of measurement.

An intrinsic regime operates at the highest temperatures where the defect concentrations are thermally controlled. The presence of impurities tends to generate additional defects, and when these dominate ones which have been thermally activated, there is an effective lowering of Q and enhancement of D, signifying the onset of extrinsic diffusion. This "knee", or change in slope of the Arrhenius plot is sensitive to the impurity content of the crystal, and if it is too high, the intrinsic region may not be reached before the melting temperature [7]. The presence of grain boundaries and dislocations will also cause enhanced diffusion rates. Conversely, at the lowest temperatures other processes may become important [14]. For oxides Harrop [1] has summarized the properties of the two main regions of interest, intrinsic and extrinsic, and suggested that activation energies for these are typically 625 \pm 210, and 250 \pm 160 kJ mol⁻¹, respectively.

Evaluating and interpreting the diffusional properties of highly pure oxides may be difficult. but with non-stoichiometric compounds further problems are encountered. Diffusion rates in the "binary" oxides of the transition metal ions Fe, Co and Mn are a function of the ambient pO_2 and hence composition. In Fe_{1-x}O, for example [15], tracer self-diffusion coefficients at a given temperature may vary by an order of magnitude depending upon the pO_2 (Fig. 2), and it is necessary

Figure 2 Tracer diffusion coefficient of Fe in wustite as a function of oxygen to metal ratio (O/Fe) at 1373K. (After Hembree and Wagner [15].)

Figure 3 Tracer diffusion coefficient of Fe in Magnetite as a function of oxygen partial pressure (pO_2) at 1273 K. (After Dieckmann and Schmalzried [16].)

to distinguish between results at constant composition and constant pO_2 . Some of the ternary oxides, for example Fe₃O₄ [16], present even more hazards since *D* will be a function of chemical activity, and may vary in a complicated way (Fig. 3). Under these circumstances it is not strictly valid to talk about an activation energy, but it may be useful to employ the concept for order-ofmagnitude estimates at constant composition.

Diffusion rates in oxides are therefore sensitive to a number of factors, which may be broadly divided into (1) environmental, and (2) properties of the crystal. The former includes temperature total pressure and oxygen activity. The latter includes chemical purity, defect concentration, chemical activity of specific components, and, depending upon the nature of the sample, crystal orientation (for single crystals) or density and porosity (for polycrystalline material). Harrop [1] noted that diffusion rates measured in the intrinsic region at "high temperatures" were usually reproducible under the same conditions by other workers, but at "low temperatures" where there were varying extrinsic factors, discrepancies in the data were to be expected despite careful experiments.

3. Measurement techniques

An extensive critical review of techniques for measuring diffusion rates in solids, liquids and gasses has been provided by the Diffusion Information Center [17] and this is updated periodically. The most common methods for studying diffusion in oxides are those employing radioactive tracers, where the geometry of the experiment may be varied to suit the crystal and the tracer concerned. The results of such experiments usually refer unambiguously to the transport of the ion of interest. A number of indirect procedures are also available, but these suffer from varying degrees of inaccuracy and difficulty of interpretation, e.g. creep, shrinkage in sintering, kinetics of necking of spheres, ionic electrical conductivity and the study of oxidation kinetics by thermogravimetry or optical absorption [1].

In the last decade several new techniques and instruments have been introduced, and one of the most promising is the ion microprobe [18]. Following a tracer diffusion experiment the diffusion profile is deduced by sputtering a hole in the surface of the crystal, and analysing the sputtered material by mass spectrometer. As the depth of the hole need be only a few thousand Angstroms, high resolution may be obtained for very slowly diffusing species [18]. An alternative to this approach, employing radio-frequency sputtering as a microsectioning technique, has been described by Atkinson and Taylor [19]. The lowest measurable limit of diffusion coefficient by the latter procedure was estimated to be $10^{-24} \text{ m}^2 \text{ sec}^{-1}$.

Mössbauer spectroscopy, where diffusion leads to a broadening of the γ -ray emission or absorption peak, appeared to be a powerful tool for the study of oxide diffusion. However, in order to avoid excessive counting periods (possibly several weeks) diffusion rates must be typically 10^{-12} m² sec⁻¹ at temperatures of approximately 1000 K. One of the few materials which meets this requirement is Fe_{1-x}O [20].

A useful application of an existing technique is to maximize the available data from an interdiffusion experiment. Equation 1 shows the relation between \tilde{D} and D^* for a binary pair of solids. If S is assumed to be equal to unity, then to a first approximation \tilde{D} may be extrapolated to the limit of composition to yield successively D^*_A in material B, and D^*_B in material A. When tracers of a particular species are not readily available (e.g. Al) it may be possible to obtain the required information from a suitably designed interdiffusion experiment: the interdiffusion of Fe₃O₄ and FeAl₂O₄ yields data D^* (Al) in Fe₃O₄ [21].

Aluminium oxide [1] **Am 4.94 × 10° 564 ± 29 1473-1703 (7) $a = 3.1 \times 1$ (A_1, O_1) $[3]$ **Fe 9.18×10^{-13} 11.2 $1173 - 1373$ (7) $b = 3.1 \times 1$ $3N_{13}$ $ 2 \times 10^{-6}$ 209 ± 8 $1496 - 2023$ (7) $b = 1.2 \times 1$ $3N_{13}$ $ 144$ 0 4.6×10^{-6} 599 ± 8 $1173 - 1373$ (7) $51 = 1.2 \times 1$ $3N_{13}$ $ 2 \times 10^{-6}$ 599 ± 8 $113 - 1373$ (7) $51 = 1.2 \times 1$ $3N_{13}$ $ 2 \times 10^{-10}$ 286 ± 33 $113 - 399 - 323$ (8) $100 - 302$ (9) $51 \pm 0 - 323$ (9)	Substance	Ref.	Diffusing element	D_{0} (m ² s ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
(A4, O_3) (2)	Aluminium oxide	[1]	²⁴² Am	4.94×10^{2}	564 ± 29	1473-1703	(P) α energy absorption	1968
$ \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(Al ₂ O ₃)	[2]	45Ca		1	1670	(P) $D = 3.1 \times 10^{-13}$, R.A.	1971
$ \begin{bmatrix} 2 & 2^{3} N_{34} & - & 2 \times 10^{-6} & 29 \pm 8 & 1496 -2023 & (7) From siner 2^{3} N_{34} & - & - & 1841 & (5) From siner 5^{3} S & 123 - 132 & (7) From siner 5^{3} S & 103 - 1923 & (5) From siner 5^{3} S & 103 - 1923 & (5) From siner 5^{3} S & 103 - 1923 & (5) From siner 5^{3} S & 103 - 1923 & (5) From siner 1^{11} & 2^{3} N_{11} & - & - & 1841 & (5) From siner 1^{11} & 2^{3} N_{11} & - & - & - & 1841 & (5) From siner 1^{11} & 2^{3} N_{11} & - & - & - & - & - & - & - & - & - & $	1	[3]	^{s9} Fe	9.18×10^{-12}	112	1173-1373	(P) S.S., and absorption methods	1959
$2N_{\rm cla}$ $ 1941$ (5) $(c D = 12)$ $3N_{\rm cla}$ $ 1841$ (5) $(c D = 12)$ (5) (6)		[2]	²² Na	2×10^{-6}	209 ± 8	1496 - 2023	(J)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			²² Na	ł	I	1841	(S) $\ c D = 2.3 \times 10^{-11} \}_{D}$	101
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			²² Na	Ι	I	1841	(S) $\perp c D = 1.2 \times 10^{-11}$ K.A.	17/1
$ \begin{bmatrix} [5] & ^{10}{10} & - & - & - & - & - & - & - & - & - & $		[4]	0	4.6×10^{3}	598	1245-1348	(P) From sintering of powder	1971
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[5]	081	1	$\simeq 241$	1503-1923	(S) Gas-solid isotope exchange.	1077
$ \begin{bmatrix} [6] & {}^{10} & 1.56 \times 10^{-10} & 788 \pm 29 & 1833 - 2113 & (9) & \beta \text{ absorption} \\ \hline [7] & {}^{10} & {}^{10} & 1.1.18 \times 10^{4} & 556 & 1623 - 1813 & (9) & g \text{ absorption} \\ \hline [8] & {}^{38} & \simeq 9.5 \times 10^{-10} & 194 & 1273 - 1473 & (9) & 94% \text{ density} \\ \hline [9] & 38 & \simeq 9.5 \times 10^{-11} & 194 & 1273 - 1473 & (9) & 94\% \text{ density} \\ \hline [9] & 0 & 3 & \times 10^{-3} & 36.4 & 933 - 1473 & (9) & 97\% \text{ density} \\ \hline [10] & 13^{13} & 7.52 \times 10^{-1} & 194 & 1273 - 1473 & (9) & 97\% \text{ density} \\ \hline [300) & & 3 & \times 10^{-3} & 36.4 & 933 - 1473 & (7) & 94\% \text{ density} \\ \hline [10] & 13^{13} & 7.52 \times 10^{-4} & 211 \pm 20 & 1173 - 1223 & (9) & 97\% \text{ density} \\ \hline [300) & & 1.35 & 3.64 & 933 - 1473 & (7) & 97\% \text{ density} \\ \hline [300) & & 3 & \times 10^{-3} & 214 & 211 \pm 20 & 1273 - 1323 & (7) & 600 & 656 & 1634 - 1972 & (7) & 600 & 656 & 1634 - 1972 & (7) & 600 & 600 & 133 & 674 & 933 - 1473 & 1466 - 1673 & 1466 - 1073 & 1466 - 1073 & 1466 - 1073 & 1473 - 14673 & (7) & 600 & 133 & 674 & 774 & 77$				I	<u>~</u> 635	1903-2023	(S) mas spec.	1161
$ \begin{bmatrix} 7 \\ 1 \\ 1 \end{bmatrix} & {}^{17}\text{Pm} & 1.1.18 \times 10^4 & 656 & 1623-1813 & (P) a absorption and a solution of the absorption of$		[9]	081	1.56×10^{-10}	788 ± 29	1853-2113	(S) Ion microprobe	1978
$ \begin{bmatrix} 1 & {}^{29}\text{Pu} & {}^{1.54 \times 10^4} & {}^{594 \pm 25} & {}^{1473 - 1723} & (?) a \text{ absorption} \\ & - & {}^{-} & {}^{153 - 1473} & (?) 2 - {}^{210^{-10}} \\ & - & {}^{153 - 1473} & (?) 2 - {}^{210^{-10}} & {}^{194} & {}^{1273 - 1473} & (?) 9 7.2\% \text{ densitiens} \\ & B_3O_3) & & 2 + 8 \times 10^{-11} & {}^{194} & {}^{1273 - 1473} & (?) 9 7.2\% \text{ densitiens} \\ & B_3O_3) & & 3 \times 10^{-3} & 3 \times 10^{-3} & 36.4 & 983 - 1473 & 1194 \text{ densitiens} \\ & B_4O_3) & & 3 \times 10^{-3} & 36.4 & 983 - 1473 & 1194 \text{ densitiens} \\ & B_4O_3) & & & 3 \times 10^{-3} & 36.4 & 983 - 1473 & 1173 - 1223 & (?) a \text{ densitiens} \\ & B_4O_3) & & & & & & & & & & & & & & & & & & &$		[7]	147Pm	1.1.18 $\times 10^4$	656	1623-1813	(P) β absorption	1965
$ \begin{bmatrix} [8] & {}^{3}S & {}^{-1} & {}^{-1}S & {}$		[1]	139Pu	1.54×10^{4}	594 ± 25	1473-1723	(P) α absorption	1968
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		[8]	Sse	1	I	1573	(S) $D \simeq 10^{-19}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4		$\simeq 9.5 \times 10^{-9}$	189	1273-1473	(P) 94% density $R.A.$	1974
Stron Oxide [9] O 3×10^{-5} 36.4 983-1473 Thermograv B_2O_3 $[10]$ $^{133}B_{a}$ 7.52×10^{-4} 211 $122 - 1223$ $[75]$ $[76]$				$\simeq 4.8 \times 10^{-11}$	194	1273-1473	(\mathbf{P}) 97.2% density	
B,0,1 arium Oxide [10] 13^{3} Ba 7.52 × 10^{-12} 101 $1173-1223$ (S), Gruzin Baol 1.2 × 10^{-4} 271 ± 20 1223-1373 (S), Gruzin Barlum Oxide [11] Be - 477 1436-1853 (P) Ionic condu Berol 1.35 368 ± 7 1473-1673 S), Gruzin S), Gruzin Berol 1.35 368 ± 7 1436-1853 (P) Ionic condu Berol 113 Li 2.9 ×10^{-8} 230 1634-1972 (P) Ionic condu Berol 2.9 ×10^{-8} 230 1634-1972 (P) Neutron Berol 1.13 Li 2.9<×10^{-8} 230 1634-1972 (P) Neutron Berol 1.13 Li 2.0 1.13×10^{-8} 230 1634-1972 (P) Neutron Calcinn oxide [14] ¹⁸ O 1.13×10^{-8} 203 (S) N = 0.21 Calcin oxide [15]	Boron Oxide	[6]	0	3×10^{-9}	36.4	983-1473	Thermogravimetry	1973
antum Oxace [10] TBa 7.32×10^{-4} 2711 ± 20 $1173 - 1673$ (S), Gruzin BaO) 1.35 368 ± 7 1475 - 1673 (S), Gruzin BeO) 1.12 1.35 368 ± 7 1475 - 1673 (S), Gruzin BeO) 1.12 $7Be$ - 339 1633 - 1873 (P) Ionic condu BeO) 1121 $7Be$ - 564 ± 84 1573 - 1826 (P) Radiotracet BeO) 1131 Li 2.9 $\times 10^{-5}$ 230 1634 - 1972 (P) Neutron BeO 1.13 Li 2.9 $\times 10^{-5}$ 230 1634 - 1972 (P) Neutron Calcim oxide [14] 1^8O 1.13 $\times 10^{-6}$ 230 1634 - 1972 (P) Neutron Calcim oxide [15] $4^{+}Ca$ 1.13 $\times 10^{-6}$ 230 1634 - 1972 (P) Neutron Calcim oxide [15] $4^{+}Ca$ 1.13 $\times 10^{-6}$ 230 1634 - 1972 (P) Neutron Calcim oxide [16] 0 5.54 $\times 10^{-7}$ 266 ± 6 <	(1, 0, 0)		13310	2 - 0 - 12 2	101			
BaU) BaU) BeVilium oxide [11] Be $1.2 \times 10^{-2} \times 10^{-$		[UL]	Da		101	C771-C/11		1001
Beryllium oxide [11] Be $-$ 568 ± 7 1473-1673 (P) [onic conductored [12] 7Be $-$ 339 1633-1873 (P) [onic conductored [13] Li $-$ 339 1633-1873 (P) [onic conductored [13] Li $-$ 339 1633-1876 (P) Radiatrace [13] Li $-$ 339 1633-1972 (P) Neutron $-$ 330 1634-1972 (P) Neutron $-$ 330 1634-1972 (P) Neutron $-$ 330 1634-1972 (P) $-$ 300 1634-1972 (P) $-$ 301 1634-1972 (P) $-$ 301 1534-1972 (P) $-$ 301 1534-1972 (P) $-$ 301 1634-1972 (P) $-$ 301 1634-1972 (P) $-$ 301 1534-1972 (P) $-$ 301 1534-1942 (P) $-$	BaO)			1.2 × 10 ⁻²	271 ± 20	1223-1373	(S), Gruzin	19/1
Beryllium oxide [11] Be - 477 1436-1853 (P) Creep Be() 12] 7Be - 564 ± 84 1573-1826 (P) Radiotracer [13] Li 2.9 × 10^{-5} 230 1634-1972 (P) Neutron Li 2.9 × 10^{-5} 230 1634-1972 (P) Neutron 1.5 × 10^{-9} 230 1634-1972 (P) Neutron 1.5 × 10^{-9} 230 1634-1972 (P) Neutron Calcium oxide [15] 45 Ca 1.13 × 10^{-8} 266 ± 9 1673-2173 (P) 18 Or eaction Calcium oxide [15] 45 Ca 1.13 × 10^{-8} 266 ± 6 1738-2033 (S), R.A. Calcium oxide [16] O 5.34 × 10^{-3} 306 ± 25 1423-1823 (S) Pure Calcium oxide [17] 18 O 1.9 × 10^{-8} 91 ± 27 1373-1573 (S) 0.3% Gd d Calcium oxide [18] 60 Co 4.8 × 10^{-9} 73 ± 8 1123-1423 (S) Po_{1}^{2} = 0.21 Cobalt oxide [18] 60 Co 4.8 × 10^{-9} 73 ± 8 1123-1423 (S) PO_{2}^{1} = 0.02 Cobalt oxide [18] 60 Co 5.0 × 10^{-4} 161 ± 1 1236-1911 Serial sectic				1.35	368 ± 7	14/3-16/3/		
Be(0) $=$ 3391633-1873(P) fonic condu[12]'Be $=$ 564 ± 841573-1826(P) Radiotracer[13]Li2.9 × 10^{-5}2301634-1972(P) Radiotracer[14]1.5 × 10^{-9}2301634-1972(P) activationactivation1.5 × 10^{-9}2301634-1972(P) radiotracer[14]1.801.61 × 10^{-10}206 ± 91673-2173(P) 'a'O reactionCalcium oxide[15] 45 Ca1.13 × 10^{-6}206 ± 91673-2173(P) 'a'O reactionCalcium oxide[16]05.34 × 10^{-3}206 ± 61738-2033(S), R.A.CaO)(I17)1.901.61 × 10^{-6}206 ± 91673-2173(P) 'a'O reactionCalcium oxide[16]05.34 × 10^{-3}306 ± 251423-1823(S) O.3% Gd) dhCalcium oxide[17]1.901.9 × 10^{-6}91 ± 271373-1573(S) O.3% Gd) dhCalcium oxide[17]1.8 × 10^{-6}91 ± 271373-1423(S) PoreCobalt oxide[18] 60 Co4.8 × 10^{-7}73 ± 81123-1423(S) Por_2Cobalt oxide[19] 60 Co5.0 × 10^{-6}150'1373-1673(S) PO_20.03'Cobalt oxide[19] 60 Co5.0 × 10^{-6}150'1373-1673(S) PO_20.02'	Beryllium oxide	[11]	Be	I	477	1436–1853	(P) Creep	1961
$\begin{bmatrix} [12] & 7Be & - & 564 \pm 84 & 1573-1826 & (P) Radiotracer \\ [13] Li & 2.9 \times 10^{-5} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1634-1972 \\ 1.6 & 1.13 \times 10^{-8} & 206 \pm 9 & 1673-2173 & (P) ^{18}O reaction \\ 1.13 \times 10^{-8} & 2169 \pm 6 & 1738-2033 & (S) R.A. \\ 200 & 1.61 \times 10^{-16} & 269 \pm 6 & 1738-2033 & (S) Pure \\ 100 & 5.34 \times 10^{-8} & 2169 \pm 6 & 1738-2033 & (S) Pure \\ 100 & 5.55 \times 10^{-9} & 91 \pm 27 & 1373-1573 & (S) 0.3\% Gd dd \\ 1.9 \times 10^{-8} & 104 \pm 15 & 1123-1423 & (S) PO_2^{-} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) PO_2^{-} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) PO_2^{-} = 0.21 \\ 1.8 \times 10^{-9} & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 4.8 \times 10^{-7} & 150 & 1373-1673 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1423 & (S) PO_2^{-1} = 0.21 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1911 & Serial sectice \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1911 \\ 1.9 & 0C0 & 5.0 \times 10^{-4} & 161 \pm 1 & 1235-1911 \\ 1.9 & 0C1 & 0C1 & 0C1 & 0C1 & 0C1 \\ 1.9 & 0C1 & 0C1 & 0C1 & 0C1 & 0C1 & 0C1 \\ 1.9 & 0C1 \\ 1.9 & 0C1 & 0C1$	BeO)			1	339	1633-1873	(P) Ionic conductivity]	
$\begin{bmatrix} [13] & \text{Li} & 2.9 \times 10^{-5} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1634-1972 \\ 1.5 \times 10^{-9} & 230 & 1673-2173 \\ 1.0 & 1.61 \times 10^{-10} & 206 \pm 9 & 1673-2173 \\ 1.13 \times 10^{-8} & 269 \pm 6 & 1738-2033 \\ 269 \pm 6 & 1738-2033 & (S), \text{ R.A.} \\ 200 & 1.61 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S), \text{ R.A.} \\ 200 & 5.34 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 200 & 5.34 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 200 & 5.34 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 200 & 1.9 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 200 & 1.9 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 200 & 1.9 \times 10^{-8} & 269 \pm 6 & 1738-2033 & (S) & \text{Pre} \\ 100 & 1.9 \times 10^{-8} & 89 \pm 3 & 1123-1423 & (S) & \text{Po}_{2} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) & \text{PO}_{2} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) & \text{PO}_{2} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) & \text{PO}_{2} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) & \text{PO}_{2} = 0.21 \\ 1.8 \times 10^{-9} & 73 \pm 8 & 1123-1423 & (S) & \text{PO}_{2} = 0.22 \\ 1.8 \times 10^{-9} & 5.0 \times 10^{-4} & 150 & 1373-1673 & (S) & \text{PO}_{2} = 0.22 \\ 1.9 & \text{CO} & 5.0 \times 10^{-4} & 161 \pm 1 & 1236-1911 & \text{Serial sectic} \\ 100 & 5.0 \times 10^{-4} & 161 \pm 1 & 1236-1911 & \text{Serial sectic} \\ 100 & 1$		[12]	7Be	I	564 ± 84	1573-1826	(P) Radiotrace, experiments	1969
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[13]	Li	2.9×10^{-5}	230	1634–1972	(P) Calculation of D based	
Calcium oxide[14] 18 O1.61 × 10^{-10}206 ± 91673-2173(P) 19 O reactionCalcium oxide[15] 45 Ca1.13 × 10^{-8}269 ± 61738-2033(S), R.A.CaO)CaOi269 ± 61738-2033(S), P.u.MCaO)269 ± 61738-2173(P) 19 O reactionCaO)MCaO)MMCaO)MMCaO)MMMCaO,MMMCaO,MMCaO,MMCaO,MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM </td <td></td> <td></td> <td></td> <td>1.5 × 10⁻⁹</td> <td>230</td> <td>1634 - 1972</td> <td>activation (on matched processory contraction) method $\begin{cases} calculation of D based \\ on brain size \end{cases}$</td> <td>1967</td>				1.5 × 10 ⁻⁹	230	1634 - 1972	activation (on matched processory contraction) method $\begin{cases} calculation of D based \\ on brain size \end{cases}$	1967
Calcium oxide [15] $^{+5}$ Ca 1.13 × 10 ⁻⁸ 269 ± 6 1738-2033 (S), R.A. CaO) Carium oxide [16] O 5.34 × 10 ⁻² 306 ± 25 1423-1823 (S) Pure M CaO, $[17]$ 18 O 9.55 × 10 ⁻⁹ 91 ± 27 1373-1573 (S) 0.3% Gd dd CO 1.9 × 10 ⁻⁸ 104 ± 15 1123-1423 (S) $pO_3 = 0.21$ 1.4 × 10 ⁻⁸ 89 ± 3 1123-1423 (S) $pO_3 = 0.21$ 1.8 × 10 ⁻⁹ 73 ± 8 1123-1423 (S) $pO_3 = 0.21$ Cobalt oxide [18] 60 Co 4.8 × 10 ⁻⁷ 150 1373-1673 (S) $pO_3 = 0.02$ Cobalt oxide [18] 60 Co 5.0 × 10 ⁻⁴ 161 ± 1 1236-1911 Serial sectic		[14]	0 ⁸¹	1.61×10^{-10}	206 ± 9	1673-2173	(P) ¹⁸ O reaction $(p, n)^{18}F$	196
Cerium oxide[16]O 5.34×10^{-2} 306 ± 25 $1423 - 1823$ (S) PureMCerium oxide $[17]$ 1^8 O 9.55×10^{-9} 91 ± 27 $1373 - 1573$ (S) 0.3% (Gd) diCeO ₂ $[17]$ 1^8 O 1.9×10^{-8} 91 ± 27 $1373 - 1573$ (S) 0.3% (Gd) diCeO ₂ $[17]$ 1^8 O 1.9×10^{-8} 91 ± 27 $1123 - 1423$ (S) $pO_2 = 0.21$ CeO ₂ 1.8×10^{-9} 73 ± 8 $1123 - 1423$ (S) $pO_2 = 0.21$ Cobalt oxide $[18]$ 6^9 Co 4.8×10^{-7} 150 $1373 - 1673$ (S) $pO_2 = 0.02$ Cobalt oxide $[18]$ 6^9 Co 5.0×10^{-4} 161 ± 1 $1236 - 1911$ Serial sectic	Calcium oxide	[15]	45Ca	1.13×10^{-8}	269 ± 6	1738-2033	(S), R.A.	196
CeO2 9.55×10^{-9} 91 ± 27 $1373 - 1573$ $(S) \ 0.3\% \ Gd/dt$ CeO2 $[17]$ 18 O 1.9×10^{-8} 91 ± 15 $1123 - 1423$ $(S) \ PO_2 = 0.21$ Cobalt oxide $[18]$ 00 Co 1.8×10^{-9} 73 ± 8 $1123 - 1423$ $(S) \ PO_2 = 0.21$ Cobalt oxide $[18]$ 00 Co 4.8×10^{-7} 73 ± 8 $1123 - 1423$ $(S) \ PO_2 = 0.02$ Cobalt oxide $[18]$ 00 Co 4.8×10^{-7} 150 $1373 - 1673$ $(S) \ PO_2 = 0.02$ Cobalt oxide $[19]$ 00 Co 5.0×10^{-4} 161 ± 1 $1236 - 1911$ Serial sectic	cau) Cerium oxide	[16]	0	5.34 ×10 ⁻²	306 ± 25	1423 - 1823	(S) Pure Movement of colour boundary	197
	CeO ₂			9.55×10^{-9}	91 ± 27	1373-1573	(S) 0.3% Gd/ during oxidation	
1.4×10^{-6} 89 ± 3 $1123 - 1423$ $(P) pO_2 = 0.21$ 1.8×10^{-9} 73 ± 8 $1123 - 1423$ $(S) pO_2 = 0.02$ Cobalt oxide $[18]$ ${}^{60}Co$ 4.8×10^{-7} 150 $11373 - 1673$ $(S), PA_2 = 0.02$ (CoO) $[19]$ ${}^{60}Co$ 5.0×10^{-4} 161 ± 1 $1236 - 1911$ Serial sectic		[17]	081	1.9×10^{-8}	104 ± 15	1123-1423	(S) $pO_2 = 0.21 \text{ atm} \Big _{1 \text{ softens}}$	
1.8 $\times 10^{-9}$ 73 ± 81123-1423(S) $pO_1 = 0.02$ Cobalt oxide[18] $6^{\circ}Co$ 4.8 $\times 10^{-7}$ 1501373-1673(S), R.A.(CoO)[19] $6^{\circ}Co$ 5.0 $\times 10^{-4}$ 161 ± 11236-1911Serial sectic				1.4×10^{-8}	89 ± 3	11231423	(P) $pO_2 = 0.21$ atm $\begin{cases} x_{20} + 0.02 \\ exchange \end{cases}$	1971
Cobalt oxide[18] 60 Co4.8 $\times 10^{-7}$ 1501373-1673(S), R.A.(CoO)[19] 60 Co5.0 $\times 10^{-4}$ 161 ± 11236-1911Serial sectic				1.8×10^{-9}	73 ± 8	1123-1423	(S) $pO_2 = 0.02 \text{ atm}$	
(CoO) [19] 60 Co 5.0 × 10 ⁻⁴ 161 ± 1 1236-1911 Serial section	Cobalt oxide	[18]	°Co	4.8×10^{-7}	150	1373-1673	(S), R.A.	1969
	(CoO)	[19]	۰Co	5.0×10^{-4}	161 ± 1	1236–1911	Serial sectioning	196

TABLE I (continued)							
Substance	Ref.	Diffusing element	D_0 (m ² s ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
	[20]	60Co	7.1×10^{-7}	190	1293-1723	(S) Serial sectioning	1973
	[21]	°Co	I	I	1273	$D = (5.4 - 9.0) 10^{-11}$, Gruzin	1975
	[22]	Co	1	$(\Delta H_m = 96 - 125)$	1223-1573	Oxidation of Co $(pO_2 = 6.6 \times 10^{-4} - 0.33)$	atm)
	[23]	Co	I	1	1273-1673	Radiotracer experiments, various pO_2	1977
	[24]	°00°	3.89×10^{-8}	132	1310-1573	(S) $Co_{0.995}O$	1977
			I	I	1423	(S) $D = 9.7 \times 10^{-13} (pO_2^{0.279}) \int_{-1.5}^{0.279} (pO_2^{0.279}) dp = 0.7 \times 10^{-13} (pO_2^{0.279}) dp = 0.7 \times 10^$	
	[18]	ssFe	2.4×10^{-7}	150	1371 - 1673	(S), R.A.	1969
	-	63Ni	3.9×10^{-7}	164	1373-1673	(S), R.A.	1969
	[25]	s7Ni	3.3×10^{-6}	197	1293-1723	(S) Serial sectioning	1973
	[26]	081	5×10^{-3}	397 ± 21	1448 - 1833	(S), Gas-solid exchange $(pO_2 = 0.21)$	1969
	[27]	Sse	5×10^{-7}	244	1273-1363	(S), R.A.	1972
	[28]	\widetilde{D}	4.8×10^{-7}	94.1	1173-1573	Thermogravimetry	1975
Chromium oxide	[29]	51Cr	1	I	1473	(S) $D = 3 \times 10^{-20}$	1970
$(Cr_2 O_3)$	[30]	C	5×10^{-5}	468.2	1533-1673	Ar-H ₂ atm. (D) from cintering	1011
			4.8×10^{-8}	468.2	1533-1673	Air Air (I) moni sintennig	1121
	[31]	⁵⁹ Fe	4.95×10^{-10}	184	1173-1373	(P) Radiotracer experiments	1958
	[29]	55Fe	I	I	1473	(S) $D = 5 \times 10^{-19}$	1970
	[32]	0	$\simeq 1.59 \times 10^{-3}$	\simeq 419	1350-1675	(P) Creep	1978
	[33]	Sse	ł	i	1273	$D = 1.5 \times 10^{-14}$, Gruzin	1968
	[34]	Sse	$\simeq 3.8 \times 10^{-11}$	74.4	973-1323	(P), R.A.	1974
Copper oxide	[35]	^{110}Ag	6×10^{-7}	116	1073-1323	(S) Radiotracer experiments	1960
(Cu ₂ O)	1201	Ż	3.8 X 10	9001	913-1013 1172 1273	(r)) Vinatos of Cu avidation	1970
	[00]	n c	1010	141 17	C7CI-C/II	Autors of Cu oxidation	1074
	[37]	55	$\sim 26 \times 10^{-5}$	141±1/ 151	1072 1773	Oxidation kinetics Ovidation binetics	1977 1977
	[00]	11415	2.2 × 10 16 × 10 ⁻²	140	1073-1373		
	[//]	111	2.4×10^{-12}	51.8	973-1053	(P) Serial sectioning	1962
			8.9×10^{-10}	104	1053-1323	(\mathbf{D})	
	[40]	S	-	ł	1273	$D = 8.9 \times 10^{-13}$	1956
	[41]	uZs و	1.7×10^{-12}	37.6	873-1173	(D) Dadiatease experiments	1960
			5.2×10^{-8}	129	1173-1323	(I) VAUIOUACE EXPETIMENTS	1960
Dyspsosium oxide	[42]	. 0	1.63×10^{-9}	110	1360-1508	(S) Oxidation kinetics (thermogravimetry)	1968
(Dy ₂ U ₃) Erbium oxide	[43]	¹⁶⁹ Er	1.48×10^{-4}	427	1673 - 1973	(P) Serial sectioning	1969
(Et. 0,)	[44]	Hf	3.28×10^{6}	874 ± 188	1837-2173	(P) Extrapolated from interdiffusion data	1976
	[45]	175Hf	1.15×10^{-10}	248.3	1874 - 2103	(Impurities<617ppm) Extrinsic diffusion)(P)	1978
807			1.48×10^{10} 2.91×10^{8}	295 985	1874 - 2013 2103 - 2243	(Impurities < 319 ppm) Extrinsic diffusion seria Intrinsic diffusion sectio	l Dning
	[46]	0	1.31×10^{-8}	126	1333-1565	(S) Oxidation kinetics (thermogravimetry)	1968

Z TABLE I (continued)							
Substance	Ref.	Diffusing element	D_{0} $(m^{2} s^{-1})$	Q (kJ mof ⁻¹)	Temperature range (K)	Comments	Year
Iron oxides (FeO)	[47]	ssFre	l	1	1373	$ \begin{pmatrix} D = 1.03 \times 10^{-11} \text{ in Fe}_{0.94} \text{ O} \\ D = 1.31 \times 10^{-11} \text{ in Fe}_{0.93} \text{ O} \\ D = 1.99 \times 10^{-11} \text{ in Fe}_{0.99} \text{ O} \\ decrease \\ D = 2.35 \times 10^{-11} \text{ in Fe}_{0.00} \text{ method} \\ \end{pmatrix} $	1969
	[48]	Fe	6×10^{-9}	105 ± 13	873-1183	Mössbauer broadening	1970
	[49]	Fe		140 ± 20	1073	$D = (4.6-6.8) \times 10^{-11}$ in Fe., 94 O Mössba	auer
				135 ± 20	1173	$D = (2-2.3) \times 10^{-12}$ in Fe _{0.91} O broade	ning '2
	[50]	52, 59Fe	8.6×10^{-7}	133	973-1613	Fe _{0.94} O, S.S.	1973
	[51]	⁵⁷ Fe	1	128 ± 2 113 ± 3	1073-1323	$\left\{ p_{CO_1} / p_{O_2} = 1.6 \right\}$ Mössbauer $\left\{ p_{CO_1} / p_{O_2} = 0.9 \right\}$ Mössbauer	1973
			Ι	113 ± 3		$\left(\frac{DO2}{DO2}/pO2 = 0.5\right)$ or obtaining	
	[52]	0	I	1 1	1328	$D = 3.5 \times 10^{-11}$ in Fe. 3.9 oxidation $D = 1.6 \times 10^{-11}$ in Fe. 0 binatics	1969
		0		83.6	1090-1328		
	[53]	S	0.11	264	1323-1523	Oxidation kinetics of Fe-S alloys	1972
	[54]	\widetilde{D}	1	I		$(D = 1.1 \times 10^{-11} \text{ in Fe}_{0.952} \text{ O})_{\dots 14}$	
			I	I	1273	$D = 9.0 \times 10^{-12} \text{ in Fe}_{0.93} O$	1967
			ų	ł		$(D = 7.0 \times 10^{-12} \text{ in Fe}_{0.909} \text{O})$ kinetics	
$(Fe_2 O_3)$	[55]	⁵⁵ Fe	I	I		$(D = 1.1 \times 10^{-16}, pO_2 = 1.0)$	
			1	I	1473	$D = 5.9 \times 10^{-16}, pO_2 = 0.1$	1972
				1		$D = 2.19 \times 10^{-15}, p_{0_2} = 0.01$ Gruzin	
			1	1	1573	$D = 6.9 \times 10^{-16}, p_0^2 = 1.0^7$	
	נצעו	355	I	i	1473	$(D - 31 \times 10^{-17} \text{ w}_{-}^{-1} - 1 \text{ P})$	1974
(Fe, O,)	[57]	Ϋ́Υ	1		1553-1773	$D = 21$, $\wedge 10$, $PO_2 = 1$, NA_2 . Extranolated from Fe. $O_1 - FeAl_2O_2$.	1978
\ * *						interdiffusion data)
	[57]	°Co	i	1	1179 - 1483	(S) (d log D^* d log p_{Q_1}) = $\pm \frac{2}{3}$, R.A.	1978
	[57]	51Cr	I	ł	1483-1683	(S) (d log $D^*/d \log p_{0,1}) = \pm \frac{2}{3}$, R.A.	1978
	[58]	⁵⁹ Fe	i	1	1173-1673	(S) (d log $D^*/d \log p_{O_2}) = \pm \frac{2}{3}$, R.A.	1977
	[59]	Ni	i	260	1173-1373	Microprobe analysis	1978
	[09]	0	3.2×10^{-18}	71 ± 7	575-823	Isotope exchange, mass spec.	1967
	[61]	0	$1.8 \times 10^{-22} (p_{\rm H_s}/p_1)$	H.O ^{0.27} 71	723-823	Isotope exchange, mass spec.	1969
	[62]	Ţ	1.5×10^{-7}	ž 209	1161-1673	(S) Extrapolated from Fe ₃ O ₄ Fe _{2.8} Ti _{0.2} O ₄ interdiffusion data	1978
Gadolinium oxide	[63]	0	$5.87 imes10^{-8}$	120	1010-1277	Thermogravimetry	1969
(Gd ₂ O ₃) Holmium oxide	[64]	0	7.18 × 10 ⁻⁷	169	13231541	(S) Thermogravimetry	1968
(Ho_2O_3)		ļ	7 4 4 4 -	- 			

TABLE I (continued)							
Substance	Ref.	Diffusing element	$D_0^{(m^2 S^{-1})}$	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
Lutetium oxide	[65]	0	1.88 × 10 ⁻⁸	124	1293-1570	(S) Thermogravimetry	1968
Magnesium oxide	[99]	¹³³ Ba	2.8 ×10 ⁻⁶	337 ± 29 210 ± 10	2173-2723	Intrinsic diffusion (S) serial sectioning	1972
(INEQ)	[67]	$^{7}\mathrm{Be}$	4.2 × 10 ⁻⁹	016 ± 10 162 ± 2	907 - 2614	(S) Air and Argon atmos. S.S.	1973
	[68]	⁴⁵ Ca	2.9×10^{-9}	205 ± 1	1173-1973	(S) Thin film tracer, autoradiography	1966
	[69]	Ca	8.9×10^{-8}	266	1063 - 2123	(S) Microprobe analysis	1968
	[20]	⁴⁵ Ca	3.43×10^{-7}	309 ± 19	2123 - 2673	(S) Gruzin	1973
	[11]	45Cd	1.7 ×10 ⁻⁶	328 ± 29	2053 - 2543	(S) Serial sectioning	1971
	[72]	co	5.78×10^{-9}	199	1278-2123	(S) Chloride solution "tracer",	1962
		C				microprobe anarysis	1065
	[6]]	5	9.8 X10 °	284	6/61-6/01	(S) Chilofide solution tracer, microprobe analysis	C061
	[74]	⁵¹ Cr	1.02×10^{-7}	294	1626 - 1826	(S) Serial sectioning	1977
	[75]	Ga	I	I	1773	$D = 7.53 \times 10^{-14}$ (P)	1969
	[26]	"Ge	3.4×10^{-5}	386 ± 19	2123-2673	(S) Gruzin	1973
	[72]	Fe	8.83×10^{-9}	174.5	1273-2123	(S) Chloride solution "tracer",	1962
						microprobe analysis	
	[73]	Fe	3.2×10^{-8}	176	1573-1973	(S) Chloride solution "tracer microprobe	1965
			1.3×10^{-7}	205	CI/T_C/PT	(S) Fe metal "tracer" Janalysis	
	[77]	²⁸ Mg	7.43×10^{-6}	334 ± 18	2178-2615	Intrinsic diffusion	
			7.48×10^{-10}	151	1723 - 2173	Extrinsic duffusion (S) sectioning	1972
			5.4×10^{-5}	309	1538-1813	Precipitation region)	
	[78]	²⁸ Mg	4.19×10^{-8}	266 ± 8	1273 - 2673	(S) Solid-vapour exchange, mass spec.	1973
	[73]	Mn	4.1×10^{-11}	117	1573-1973	(S) Chloride solution "tracer",	1965
						microprobe analysis	
	[79]	Mn	9.4×10^{-10}	202 ± 24	1473-1793	E.P.R. spectroscopy	1978
	[72]	Ni	1.8×10^{-9}	202	1373–2083	(S) Chloride solution "tracer",	1962
	[80]	63Ni	6 × 10 ⁻¹⁰	174	1473-1573	IIIICIOpious analysis (S) Mrn wafers radiotracer experiments	1071
	[81]	, iz	18 × 10 ⁻⁹	202	2173-2733	(S) Solid-vanour exchange	1071
	۲- Al			4	1	micronrohe analysis	• • • • •
	[99]	iN ^{6,9}	1.4×10^{-6}	318 ± 30	2173-2723	Intrinsic diffusion) serial	
		63Ni	1.3×10^{-10}	154	1773-1973	Extrinsic duffusion ^(S) sectioning	19/2
	[82]	081	4.5×10^{-9}	252	1373-1673	Mesh $80-115 \mu m$ (P) gas-solid Mesh $170-200 \mu m$ (P) exchance	1972
	[83]	081	2.4×10^{-11}	233 ± 21	1293-1723	Well sintered (P)	
			1.6×10^{-11}	252 ± 25	1293-1553	gas-solid isotope	1973
			9.9×10^{-5}	426 ± 42	1553-1723	Loosely sintered exchange	

TABLE I (continued)							
O Substance	Ref.	Diffusing element	D_{0} (m ² s ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
	[84] [85]	46Sc 46Sc			1773 1773	$D = 3 \times 10^{-14} - 7.4 \times 10^{-16}$ (S), S.S. $D = (0.51 - 1.8) \times 10^{-15}$ (S)	1970
	[]	2		212.1	0	\mathbf{R}	1972
	[98]	⁸⁵ Sr	6×10^{-8}	281	1273-1873	(S) Serial sectioning	1973
Monteness Avide	[87]	54Mn	2.11×10^{-6}	299 ± 7	1678-2033	(S) Serial sectioning $D = 2 + 27 \times 10^{-13}$. Log $n_{2} = -8$	1771
(MnO)	[oo]	ITTAT		I	1305	$D = 1.10 \times 10^{-13} \cdot \log_{10} P_0^2 = -10$	1970
			ł	1		$D = 5.02 \times 10^{-15} \cdot \log_{10} p_{0_2} = -17$ $D = 3.16 \times 10^{-15} \cdot \log_{10} p_{0_2} = -1.18$	
			1	131	1123-1413	$D = 3.10 \times 10^{-10} \cdot 10^{10} + 0^{-10} \cdot 10^{-10} + 10^{-10} \cdot $	
Molybdenum oxide	[68]	081	9.1×10^{-12}	84.9	683-773	$p_{O_2} = 0.21 - 1.0$, isotope exchange and	1971
(MOU ₃)	[06]	081	5.4×10^{-2}	255	593-1023	Ollic conductivity (ivertist equation) (P) Isotope exchange	1975
Niobium oxide	[91]	0	1	1	1173 {	$\ cD = 8.3 \times 10^{-15} \\ PO_{-1.4} \times 10^{-16} \\ PO_{-1.4} \times 10^{-16}$	1968
(N0 ₂ U ₅)			1 1	1	1123 ($ c D = 2.1 \times 10^{-1.4}$	1)**
						$L c D = 1.1 \times 10^{-16} P O_2 = 10^{-2} atm$ and the	n auto-
						radiogr	aphy
	[92]	0	1 1	212 222	953-1238	$p = 10^{-5} - 1 \text{ atm}$ (S) electrical $P = < 10^{-13} \text{ atm}$ conductivity	1968
	[63]	0	1.07×10^{-6}	179	1143-1273	$p_{0_2} = 0.21 - 1.0$, isotope exchange	1971
						and ionic conductivity	
	[94]	081	1.85×10^{-6}	203 ± 13	1173-1473	$p_{O_2} = 0.18 \text{ atm}$, gas-solid exchange $p_{O_2} = 2.2 \times 10^{-14} m_{O_2} = 0.08 \text{ atm}$ me	1976
	[64]	D	1 1	łł	1373	$D = 3.2 \times 10^{-7} PO_2 = 0.00 \text{ atm} [\text{gas}^{-1}]$ $D = 2.6 \times 10^{-14} PO_2 = 0.12 \text{ atm} [\text{solid}]$	1978
			Ι	t		$D = 3.0 \times 10^{-14} p_{\Omega_2} = 0.18 \text{ atm}$ exchange	
Neodymium oxide	[96]	081	1.3×10^{-8}	128 ± 6	979–1275	(S) Isotope exchange	1968
(Na ₂ U ₃) Nickel oxide	[67]	°D°,	4.6 ×10-6	222	1373-1673	(S), R.A.	1969
(NiO)	[98]	"Co	9.12×10^{-7}	227	1358-1922	(S) Serial sectioning	1971
	[66]	3éCl	1.8×10^{-11}	160	1473 - 1703	R.A.	1974
	[100]	⁵¹ Cr	9.36×10^{-9}	197	1373-1523	(S) Serial sectioning	1971
	[101]	² Cr	8.6 × 10 ⁻⁷	282	1465-1915	(S) Serial sectioning $D = 2 \times 10^{-16}$	6/4T
	[701]	D_		1 1	12/3	$D = 2 \times 10^{-14}$ (S) serial sectioning $D = 2 \times 10^{-14}$ (S)	1973
	161	55Fe	2.2×10^{-7}	193	1373-1673	(S) R.A.	1969
	[103]	Fe	1.6×10^{-12}	76.2)		$p_{0_s} = 0.011 \text{ atm}$ (S) electron	
			5.9×10^{-11}	108	1334-1514	$p_{O_2} = 0.21 \text{ atm}$ microprobe	1975
			6.7 X 10 ···	108)		$PO_2 = 1 \text{ atm}$) analysis	

Substance	Ref.	Diffusing element	$D_0 (m^2 s^{-1})$	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
	[104]	N	6.5 × 10 ⁻⁶	204	1073-1273	(P) Electrical conductivity	1969
	[62]	iN ^c	8.9×10^{-7}	229	1373-1673	(S) R.A.	1969
	[105]	63, S7Ni	4.77 × 10 ⁻⁶	254 ± 3	1453-2033	O_2 atmos (S) R.A. and S.S.	1970
	[106]	Ni	- 00 × 10	202 ± 1) 226	1173-1543	Oct auros) Oxidation kinetics of Ni	1972
	[107]	iN ^{6,9}	I	1	1073	$D = 6.0 \times 10^{-18}$ (P), R.A.	1972
	[108]	Ni	1.85×10^{-7}	201)		in O_2	
			1.01×10^{-8} 2 91 × 10^{-8}	197	1123-1443	in air {(P) Gruzin in N	1974
	[109]	N		113 ± 33	1333-1523	Oxidation kinetics of Ni	1975
	[110]	63Ni	1.5×10^{-6}	242 ± 4	973-1673	(S) Gruzin	1978
	[111]	O ₈₁	1	I	1373	$D = 5 \times 10^{-19}$) sectorid exchange	
			1	I	1673	$D = 2 \times 10^{-17} \begin{cases} 5^{43} - 3^{010} \text{ commute}, \\ D = 4 \times 10^{-16} \end{cases}$	1976
	(011)	150			C/01		
	[112]	ss S	$3.8/ \times 10^{-9}$	238 185	12/3 - 1363 1093 - 1473	(S), K.A. (S), R.A.	1976
	[114]	35S	2.9×10^{-4}	370	1773 1572	Diffusion via Ni vacancies	1079
			1.08×10^{-13}	137	14/J-LJ43	Diffusion via oxygen vacancies $\int (0, 0)$, $0.0.0$	0/71
	[115]	Ũ	6.45×10^{-6}	141	1373-1573	(S) Electrical conductivity	1971
	[116]	Ũ	2.9×10^{-7}	91,	1273-1443	(S) Electrical conductivity	1973
	[117]	D	1.64×10^{-6}	94 \	1273-1473	(S) Conductivity (during oxidation	1979
	[011]		9.68 X 10	(98		Conductivity (during reduction	
(PbO)	[011]	þ		1	101	$D \simeq 4 \times 10^{-1}$ (c) gas-solid isotope	1912
Praeseodymium oxide	[119]	081	5.5×10^{-10}	77 ± 1	1008-1138	$p_{\Omega_{1}} = 0.04 \text{ atm}$	
$(Pr_7 O_{12})$			1.3×10^{-9}	80 ± 2	1103-1203	$p_{O_2} = 0.28 \text{ atm} \begin{cases} \text{isotope} \\ \text{exchange} \end{cases}$	1971
	1001	081	9. $\times 10^{-12}$	34 ± 3	1003-1073	$p_{O_2} = 0.28 \text{ atm}$	
	[121]	C	$11-01 \times 10^{-11}$	C + 2 PY	1286-1446	$PO_2 = 0.05$ at III $n_2 = 0.14$ at m (C) isotone exchange	1973
			9.65×10^{-11}	1 - 0.00	1316-1466	$PO_2 = 0.14 \text{ atm}$ (3), isotope examined $PO_1 = 0.26 \text{ atm}$	C1/T
	[121]	081	6.29×10^{-11}	62.6	1013-1173	$p_{\Omega} = 0.14 \text{ atm} (P) (S) \text{ isotope exchange}$	1976
Plutonium oxide	[122]	O ₈₁	1.19×10^{-7}	176.4	1273-1573	Gas-solid isotope exchange	1973
(PuO ₂) Scandium oxide (Sc. O.)	[123]	0	7.72×10^{-8}	160.1	1379–1571	(S) Thermogravimetry	1968
Silicon oxide	[124]	Au 4500	5×10^{-14}	81.9	473-873	(S) Rutherford scattering	1976 1970
(JUO2)	[[44]]	22	IU	7.407	C201-C10	(0) C, N.A.) I

$ \begin{array}{ccccccc} (126) N_{6} & 38 \times 10^{-4} & 1024 & 673-1273 \text{mitrora defraction analysis} \\ (127) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Substance	Ref.	Diffusing element	$D_0 (m^2 s^{-1})$	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		[126]	Na	3.8 ×10 ⁻⁶	102.4	673-1273	Infra-red spectroscopy and	1967
Samurium oxide [123] PNA 6.8 × 10 ² 9.9 × 10 ² 112.4 ×		[127]	²² Na	7 09 X 10-7	481+8	873-1073	ngu lun achvanun analysis c\	1970
Samutium oxide [123] Page Page $= 2 \times 10^{-3}$ $= 113 + 43$ $= 37 - 10^{5}$ $= 113 - 43$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 37 - 10^{5}$ $= 39 - 39^{5}$ $= 39 - 39^{5}$ $= 39 - 39^{5}$ $= 39 - 39^{5}$ $= 39 - 39^{5}$ $= 37 - 30^{5}$ <th< td=""><td></td><td>[125]</td><td>²²N₃</td><td>6.8 × 10⁻⁵</td><td>84 ± 1</td><td>573-843</td><td></td><td>1970</td></th<>		[125]	²² N ₃	6.8 × 10 ⁻⁵	84 ± 1	573-843		1970
Samarium oxide [12] 10^{-4} 171 ± 4 713 ± 433 10^{-3} 171 ± 4 713 ± 433 99^{-6}		[128]	²³ Na	4 ×10-6	113 ± 4	873-1063	$\begin{pmatrix} 1 & c \\ 1 & c \end{pmatrix}$ (S), R.A.	1970
Sametim otde [12] ¹⁰ O 92 × 10 ⁻¹⁰ 98 ± 8 959-1223 99.95 Sm ₁ O ₁ biotope exchange Sign, O ₁ biotope exchange Sign, O ₁ biotope exchange Sign, O ₁ biotope exchange and ionic (13)] 0 4.5 $\pm 0.2 \times 10^{-3} - 0.5 \pm 1173 - 1573$ biotope exchange and ionic (13)] 0 4.5 $\pm 0.2 \times 10^{-3} - 0.5 \pm 1173 - 1573$ biotope exchange and ionic (13, 13)] 0 4.5 $\pm 0.2 \times 10^{-3} - 0.5 \pm 1173 - 1573$ biotope exchange and ionic (13, 13)] 0 5.73 \times 10^{-3} - 73.6 \pm 1173 - 1573 biotope exchange and ionic (13, 13)] 0 5.73 \times 10^{-3} - 233 - 2			1	2×10^{-2}	171 ± 4	713-843	Tc	
(50, 0, 0) (50, 0, 0) (50, 0, 0) (51, 10) *5; (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0, 0) (51, 12) (50, 0) (51, 12) (71, 12) (71,	Samarium oxide	[129]	0 ⁸¹	9.2 × 10 ⁻¹⁰	98 ± 8	969-1223	99.9% Sm ₂ O ₃ Asotone exchange	1968
Strontion solds (130) *5.25.X 10° 4.44.6 7.5.2.X 10° 4.5.5.X 10° 5.7.5.X 10° 5.7.5.X 10° 5.7.5.7 10° 5.7.5.7 10° 5.7.5.7 10° 5.7.5.7 10° 5.7.5.7 10° 5.5.5.7 10° 5.5.5.7 10° 5.5.5.7 10° 5.5.5.7 10° 6.5.5.5.5.6.7	(Sm_2O_3)		;	6.0 × 10 ⁻¹⁰	89 ± 2	975-1272	99.99% $Sm_2 O_3$	
	Strontium oxide	[130]	85Sr	2.52×10^{-2}	444 ± 6	1723-1873	(S) Gruzin	1971
Tanadiam oxide [13] 10	(SrO)	11213	c	4.48 X 10 ⁻⁸	266 ± 4	1473-1673	Testano avahanna and ionio	1071
Tranum oxide [13] ¹⁰ O 5.3×10^{-4} 73.6 1118-1919 Gas-solid isolope exchange (ThO ₂) [133] 0 -23.8 $2373-3073$ Lattice diffusion (P) settial [133] 0 -3^{-1} 2.91×10^{-4} 238×10^{-1} $2373-3073$ Lattice diffusion sectioning [137] 3^{-1} 3.5×10^{-4} 6.55×10^{-13} $2373-3273$ (P) settial lattice diffusion [137] 3^{-1} U 3.5×10^{-4} 237 $2073-2273$ (P) settial lattice diffusion [137] 3^{-1} U 3.7×10^{-4} 379 $2073-2273$ (P) settionnetry [138] 3^{-1} U 3.7×10^{-4} 227 $2073-2273$ (P) settionnetry [139] 4^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U [141] 9^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U [141] 9^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U 3^{-1} U	Tantatum Uxide	[TCT]	0	0T V 07"+	C.611	C/7T-C/TT	conductivity (Nernst equation)	11/1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thorium oxide	[132]	081	5.73×10^{-6}	73.6	1118-1919	Gas-solid isotope exchange	1976
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ThO ₃)	[133]	0	ł	$\simeq 238$	2373-3073		1976
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i a	[134]	²³³ Pa	2.91 × 10 ⁻⁹	315 ± 21	<i>2010 2100</i>	Lattice diffusion (P) serial	1968
[135] 29 Th 1.25×10^{-4} 245.8 $1873 - 2373$ (7) c_{energy} sectometry [136] Th 3.5×10^{-4} 625 $2119 - 2318$ (5) sciant sectoning [138] 23 V 5×10^{-4} 627 $207 - 2318$ (5) sciant sectoning [138] 24 Ti 3×10^{-4} 527 $207 - 2313$ (5) sciant sectoning [139] 44 Ti 3×10^{-4} 223 $207 - 2313$ (5) sciant sectoning [140] 1^{10} Ag 2×10^{-4} 233 100_{-460} 100_{-460} 100_{-460} [141] 97 Ee $1-9$ 233 100_{-460} 100_{-460} 10^{-4} 10^{-4} [141] 97 Ee $1-92 \times 10^{-4}$ 233 100_{-460} 10^{-4} </td <td></td> <td></td> <td></td> <td>6.66×10^{-15}</td> <td>128 ± 13 /</td> <td>6177-6107</td> <td>Grain-boundary diffusion sectioning</td> <td>00/1</td>				6.66×10^{-15}	128 ± 13 /	6177-6107	Grain-boundary diffusion sectioning	00/1
[136] Th 3.5×10^{-3} 6.25 $2119-2318$ (5) Serial sectioning [137] 37 U 11×10^{-3} 5.7 $2073-2273$ (7) S.S. and $7-ray pertometry [139] ^{47}U 11 \times 10^{-3} 5.8 263 2073-2273 (7) S.S. and 7-ray pertometry [139] ^{47}U 11 \times 10^{-3} 263 1923-2373 (7) S. and 7-ray pertometry (TOa) 11401 11 \times 10^{-3} 263 1923-2373 (7) S. and 7-ray pertometry (TOa) 11401 11 \times 10^{-3} 263 1033 \pm 10 D 100 (TOa) 11401 11^{-3} 233 102_{-3} 10^{-3} 10^{-3} (TOa) 11411 ^{97} 233_{-182} 102_{-3} 10^{-3} 10^{-3} (140_{-3}) 192_{-123} 103_{-123} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} 10^{-3} $		[135]	4T ⁰²²	1.25×10^{-11}	245.8	1873-2373	(P) a-energy spectrometry	1968
[137] 23 U 1.1×10^{-8} 319.4 $2073-2273$ (P) S.S. and γ -ray spectrometry Thanium oxide [139] 47 Ti 3×10^{-5} 627 $1923-2273$ (P) S.S. and γ -ray spectrometry (TIO _x) 1×10^{-4} 5×10^{-5} 563 $1523-1823$ $TO_{0,46}$ 9 exctoometry (TIO _x) $1 \to 10^{-4}$ 576 233 $1523-1823$ $TO_{0,46}$ 9 exctoometry (TIO _x) $1 \to 10^{-4}$ 263 $1523-1823$ $TO_{0,46}$ 9 exctoometry (TIO _x) $1 \to 10^{-4}$ 263 $1523-1823$ $TO_{0,46}$ 10^{-4} 10^{-4} (TIO _x) $1 \to 10^{-4}$ 238 10^{-3} 233 10^{-14} P 10^{-14} P (TIO _x) 1143 0 2324 $123-1673$ P_0 10^{-13} P_0 10^{-13} P_0 10^{-13} P_0 10^{-14} P_0 10^{-14} P_0 10^{-13} 10^{-14} 10^{-14} 10^{-14} 10^{-14} 10^{-14} 10^{-14} 10^{-14} 10^{-14}		[136]	Th	3.5×10^{-5}	625	2119-2318	(S) Serial sectioning	1971
Titanium oxide [138] 23 U 5 × 10^{-5} 627 1923-2373 (S) acentery spectrometry Titanium oxide [139] 4 Ti 3 × 10^{-5} 268 TO _{0.06} Serial sectioning (TiO ₄) (TiO ₄) 5 × 10^{-5} 268 TO _{0.06} Serial sectioning (TiO ₄) 1 2 Te 10^{-1.06} 233 TO _{0.06} Serial sectioning (TiO ₄) [141] 3 Te 1.9 2.3 1.523-1823 TO _{0.06} Serial sectioning (TiO ₄) [141] 9 Te 1.9 2.3 1.083 ± 10 $D = (1.9 - 9.4) \times 10^{-1.3}$ (P) Gruzin 1 (TiO ₄) [141] 9 Te 1.93 × 10^{-5} 229.91 1043-1273 (P) Gruzin 1 (TiO ₄) [143] 0 1.7 × 10^{-6} 222.24 1173-1273 (P) Gruzin 1 (TiO ₄) [143] 0 1.7 × 10^{-6} 222.24 1173-1273 (P) Gruzin 1 (TiO ₄) 0 1.173-1273 PO ₄ = 0.92 ± M, (S) ^{4} (P) (G, α) ^{1N} (M) 1 ([137]	Ω_{LEZ}	1.1×10^{-8}	319.4	2073-2273	(P) S.S. and γ -ray spectrometry	1968
Titanium oxide [139] ⁴⁴ Ti 3×10^{-5} 268 TiO _{0.460} (TiO ₄) TiO _{1.46} TiO _{1.46} TiO _{1.46} Serial sectioning 5×10^{-5} 238 TiO _{1.46} Serial sectioning 1×10^{-4} (TiO ₄) [141] ¹⁰ Ag $- 2 \times 10^{-5}$ 238 TiO _{1.46} Serial sectioning TiO _{1.46} TiO _{1.41} $^{-9}$ TiO _{1.46} Serial sectioning TiO _{1.46} TiO _{1.46} TiO _{1.4} TiO _{1.41} $^{-9}$ TiO _{1.46} TiO _{1.7} $^{-10}$ TiO _{1.46} Serial sectioning TiO _{1.46} TiO _{1.4} TiO ₁		[138]	0 ²³³ U	5×10^{-5}	627	1923-2373	(S) α -energy spectrometry	1976
(TiO _x) (T	Titanium oxide	[139]	44Ti	3×10^{-5}	268)		TiO _{0,807})	1976
$ (TiO_2) \qquad (TiO_2) \qquad (TiO_1)_{146} \qquad TiO_{1,146} \qquad TiO_{1,16} \qquad TiO_{1,146} \qquad TiO_{1,16} \qquad TiO_{1,146} \qquad TiO_{1,16} \qquad$	(TiO_x)			1×10^{-4}	272 (1573-1873	TiO _{1.006} (serial sectioning	1973
(TiO ₂) [140] ^{110}Ag = $\frac{4 \times 10^{-5}}{1.9} = 238^{7}$ 1083 ± 10 $D = (1.9 - 9.4) \times 10^{-13}$ (P) Gruzin 1 [141] ^{59}Fe 1.92 × 10^{-5} 231.6 1043 - 1273 (P) = (1.9 - 9.4) \times 10^{-13} (P) Gruzin 1 [142] 0 1.7 × 10^{-6} 2769 1223 - 1673 $P_{0_3} = 0.92 \text{ atm}$ (S) $^{18}\text{O}(p, \alpha)^{15}\text{N}$ 1 [143] 0 2.88 × 10^{-5} 222.4 1173 - 1273 holope exchange and ionic conductivity (Nernst equation) [144] ^{18}O = $2.88 \times 10^{-5} 222.4 1173 - 1273$ holope exchange and ionic conductivity (Nernst equation) [144] ^{18}O = $2.88 \times 10^{-5} 222.4 1173 - 1273$ holope exchange and ionic conductivity (Nernst equation) [145] ^{18}O = -1079 $D = 1.7 \times 10^{-19} \text{ Lc}$ (S) isotope 1 [146] 0 2.61 \times 10^{-6} 237 1173 - 1273 (S) Electrical conductivity (148] ^{44}Ti $4.6 \times 10^{-6} 236.4$ $^{1473} - 1793$ (S) Electrical conductivity (S) isotope 1 [147] $^{46} \times 10^{-6} 236.4$ $^{1473} - 1793$ (S) Erial sectioning 1 [148] ^{44}Ti $2.4 \times 10^{-7} 202.7$ $^{1173} - 1573$ (S) Serial sectioning 1 [147] $^{46} \times 10^{-6} 236.4$ $^{1470} - 1783$ ^{12}C (S) = 1000 µm (sotope 1 2.4 × 10^{-7} 2.57 1173 - 1573 (S) Serial sectioning 1 2.4 × 10^{-7} 2.50.4 $^{1470} - 1783$ ^{12}C (S) isotome 1 2.4 × 10^{-7} 2.57 1173 - 1573 (S) Serial sectioning 1 2.4 × 10^{-7} 2.50.4 $^{1470} - 1783$ ^{12}C (S) isotome 1 2.4 × 10^{-7} 2.50.4 $^{1470} - 1783$ ^{12}C (S) isotome 1 2.4 × 10^{-7} 2.50.4 $^{1470} - 1783$ ^{12}C (S) isotome 1 2.4 × 10^{-7} 2.50.4 ^{12}C (S) isotome 1 2.5 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)				6×10^{-5}	263	C701	Tio _{1.06}	
(TiO ₂) [140] ^{110}Ag = $-$ 1083 ± 10 $D = (1.9 - 9.4) \times 10^{-13}$ (P) Gruzin 1 [141] ^{97}Fe 1.92 × 10^{-5} 229.9 1043 = 1273 (P) [142] 0 1.7 × 10^{-6} 276 1223 - 1673 $p_{02} = 0.92 \text{ atm}$, (S) $^{19}\text{O}(p, \alpha)^{15}\text{N}$ 1 [143] 0 2.88 × 10^{-5} 222.4 1173 - 1273 isotope exchange and ionic [144] ^{18}O = $-$ 1079 $D = 1.7 \times 10^{-19}$, $L \in (S)$ isotope exchange and ionic [145] ^{19}O = $-$ 1079 $D = 1.7 \times 10^{-19}$, $L \in (S)$ isotope exchange [146] 0 2.61 \times 10^{-5} 2273 13273 $D = 2.15 \times 10^{-16}$, $^{7}\text{S} - 150 \text{m}$ [isotope [147] ^{44}Ti 6.4×10^{-5} 257 1173 - 1573 (S) Serial sectioning [148] ^{44}Ti 2.4×10^{-7} 202.7 $1470 - 1783$ $^{10}\text{C}(S)$ [148] ^{44}Ti 2.4×10^{-7} 202.7 $1470 - 1783$ $^{10}\text{C}(S)$ [148] $^{44}\text{C} \times 10^{-5}$ 250.4 ^{14}Ti $^{173}\text{C}(S)$ Serial sectioning [148] $^{44}\text{C} \times 10^{-5}$ 250.4 ^{14}Ti $^{16}\text{C}(S)$				4×10^{-5}	238/		TiO _{1.259} /	
$\begin{bmatrix} [141] & {}^{35}\text{Fe} & 1.92 \times 10^{-5} & 231.6 \\ 1.98 \times 10^{-5} & 229.9 \\ 1.98 \times 10^{-5} & 229.9 \\ 1.7 \times 10^{-6} & 276 & 1223 - 1673 & P_{0_2} = 0.92 \text{ atm}, (S) {}^{18}\text{O}(p, \alpha) {}^{19}\text{N} & 1 \\ 1.7 \times 10^{-5} & 222.4 & 1173 - 1273 & 1000 \text{ exchange and ionic conductivity (Nerra equation)} \\ \begin{bmatrix} [142] & 0 & 2.88 \times 10^{-5} & 222.4 & 1173 - 1273 & 1000 \text{ exchange and ionic conductivity (Nerra equation)} \\ 1.44 & 1^{18}\text{O} & - & 1079 & D_2 = 1.7 \times 10^{-19} \text{ i.c} (S) isotope exchange e$	(TiO_2)	[140]	110Ag	I	-	1083 ± 10	$D = (1.9 - 9.4) \times 10^{-13}$ (P) Gruzin	1967
$\begin{bmatrix} [142] & 0 & 1.7 \times 10^{-6} & 229.9 \\ [143] & 0 & 2.88 \times 10^{-5} & 276 & 1223-1673 & p_{0_2} = 0.92 \text{ atm}, (S)^{18}O(p, \alpha)^{15}N & 1 \\ [144] & ^{18}O & 2.88 \times 10^{-5} & 222.4 & 1173-1273 & 1sotope exchange and ionic conductivity (Nernst equation) \\ \begin{bmatrix} [144] & ^{18}O & - & - & - & - & - \\ 0 & 2.88 \times 10^{-5} & 222.4 & 1173-1273 & 10^{-19}, 1.c (S) isotope \\ 0 & - & - & - & - & - & - & - \\ 1079 & D & = 3.2 \times 10^{-9} \ c \right (S) isotope & 1 \\ \begin{bmatrix} 145 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		[141]	59Fe	1.92×10^{-5}	231.6	1043 - 1273	(J)	1958
$\begin{bmatrix} [142] & 0 & 1.7 \times 10^{-6} & 276 & 1223-1673 & P_{02} = 0.92 \text{ atm}, (S)^{15}O(P, \alpha)^{15}N & 1 \\ [143] & 0 & 2.88 \times 10^{-5} & 222.4 & 1173-1273 & Isotope exchange and ionic \\ 173-1273 & Isotope exchange and ionic \\ 1079 & (D = 1.7 \times 10^{-19}, 1.c) & (S) isotope \\ 1079 & (D = 3.2 \times 10^{-10}, 1.c) & (S) isotope \\ 1273 & D = 3.2 \times 10^{-10}, 1.c) & (S) isotope \\ 1461 & 0 & 2.61 \times 10^{-7} & 886.9 & 1453-1793 & (S) Electrical conductivity \\ 1147) & ^{44}Ti & 6.4 \times 10^{-5} & 257.4 \\ 1173-1573 & (S) Serial sectioning \\ 1481 & ^{44}Ti & 2.4 \times 10^{-7} & 202.7 \\ 2.4 \times 10^{-7} & 202.7 & 1173-1573 & (S) Serial sectioning \\ 1470 & ^{44}Ti & 2.4 \times 10^{-7} & 202.7 \\ 1480 & ^{44}Ti & 2.4 \times 10^{-7} & 202.7 \\ 1470 & ^{44}Ci & (S) & ^{44}Ci & (S) \\ 2.4 \times 10^{-7} & 202.7 & 1173-1573 & (S) Serial sectioning \\ 1470 & ^{46}Serial sectioning \\ 2.4 \times 10^{-7} & 202.7 & 1273 & 1273 & 1273 \\ 1470 & 1783 & 1^{47}Serial sectioning \\ 1470 & ^{46}Serial Sectioning \\ 1470 &$				1.98×10^{-6}	229.9]			
$\begin{bmatrix} [143] & 0 & 2.88 \times 10^{-5} & 222.4 & 1173-1273 & Isotope exchange and ionic \\ \begin{bmatrix} [144] & ^{18}O & - & & & & & & & & & & & \\ & & & & & &$		[142]	0	1.7×10^{-6}	276	1223-1673	$p_{O_2} = 0.92 \text{ atm, (S)} {}^{18}O(p, \alpha) {}^{18}N$	1791
$\begin{bmatrix} [144] & {}^{18}O & - & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\$		[143]	0	2.88 × 10 ⁻⁵	222.4	1173-1273	Isotope exchange and ionic	1971
$\begin{bmatrix} [144] & {}^{18}O & - & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\$:				conductivity (Nernst equation)	
$\begin{bmatrix} [145] & {}^{19}O & - & - & - & 1273 & D = 3.2 \times 10^{-20} \ c \right] \text{ exchange} \\ \begin{bmatrix} 146] & O & 2.61 \times 10^{-7} & 886.9 & 1453 - 1793 & S \end{bmatrix} = 6.78 \times 10^{-17} \cdot 150 - 300 \mu\text{m} \right] \text{ exchange} \\ \begin{bmatrix} 147] & {}^{44}\text{T}i & 6.4 \times 10^{-6} & 257 \\ 1147] & {}^{44}\text{T}i & 4.6 \times 10^{-6} & 257 \\ 1173 - 1573 & S \end{bmatrix} \text{ excital conductivity} \\ \begin{bmatrix} 148] & {}^{44}\text{T}i & 4.6 \times 10^{-6} & 250.4 \\ 2.4 \times 10^{-7} & 202.7 \\ \end{bmatrix} \begin{bmatrix} 1470 - 1783 & \ c \\ S \end{bmatrix} \text{ excital sectioning} \\ \begin{bmatrix} 168\\ -4 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 470 - 1783 & \ c \\ S \end{bmatrix} \text{ excital sectioning} \end{bmatrix} \begin{bmatrix} 1\\ -2\\ -250.4 \end{bmatrix} \begin{bmatrix} 1\\ -250.4 \end{bmatrix} \begin{bmatrix} 1\\ -250.4 \end{bmatrix} \begin{bmatrix} -2\\ -250.4 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -2\\ -250.4 \end{bmatrix} \begin{bmatrix} -2\\ -2$		[144]	081	I	ι	1079	$D = 1.7 \times 10^{-19}, \perp c$ (S) isotope	1971
$\begin{bmatrix} [145] & ^{18}O & - & 1273 & D = 2.15 \times 10^{-16}; 75-150 \mu\text{m} \ \text{isotope} & 1 \\ & - & 1269 & D = 6.78 \times 10^{-17}; 150-300 \mu\text{m} \ \text{exchange} \\ & 1173 - 173 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$				ł	I		$(D = 3.2 \times 10^{-20} \parallel c)$ exchange	
$\begin{bmatrix} 146 \end{bmatrix} 0 \\ 2.61 \times 10^{-7} \\ 147 \end{bmatrix} \xrightarrow{44}{\text{Ti}} 0 \\ 4.6 \times 10^{-6} \\ 2.4 \times 10^{-6} \\ 2.4 \times 10^{-7} \end{bmatrix} \begin{bmatrix} 2.61 \times 10^{-7} \\ 1453 - 1793 \\ 1173 - 1573 \\ 1453 - 1793 \\ 1470 - 1783 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1173 - 1573 \\ 1470 - 1783 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1173 - 1573 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1173 - 1573 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1173 - 1573 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1173 - 1573 \\ 1c \end{bmatrix} \begin{bmatrix} 5.73 \times 10^{-17} \\ 1c \end{bmatrix} \begin{bmatrix} 5.7$		[145]	081	ſ	I	1273	$D = 2.15 \times 10^{-16}$; $75 - 150 \mu m$ (isotope	1976
$ \begin{bmatrix} 146 \end{bmatrix} O & 2.61 \times 10^{-7} & 886.9 & 1453 - 1793 & (S) Electrical conductivity & 1 \\ \begin{bmatrix} 147 \end{bmatrix} & {}^{44}\text{Ti} & 6.4 \times 10^{-6} & 257 & 1173 - 1573 & (S) Serial sectioning & 1 \\ \begin{bmatrix} 148 \end{bmatrix} & {}^{44}\text{Ti} & 4.6 \times 10^{-6} & 250.4 \\ \end{bmatrix} & 1470 - 1783 & \ c\right (S) \\ 1470 - 1783 & 1c\right (S) \\ \end{bmatrix} $				1	1	1269	$D = 6.78 \times 10^{-17}$: 150–300 µm fexchange	
$\begin{bmatrix} 147 \\ 4^{4}\text{Ti} \\ 148 \end{bmatrix} \xrightarrow{44}\text{Ti} \\ 4.6 \times 10^{-6} \\ 2.4 \times 10^{-7} \\ 2.4 \times 10^{-7} \\ 2.02.7 \end{bmatrix} \xrightarrow{1173-1573} \text{ (S) Serial sectioning} \\ 1470-1783 \\ 1c \end{bmatrix} \text{ (S)} \\ 1c \end{bmatrix} \text{ serial sectioning} \\ 1 \end{bmatrix} $		[146]	0	2.61×10^{-7}	886.9	1453-1793	(S) Electrical conductivity	1976
[148] ⁴⁴ Ti 4.6 $\times 10^{-6}$ 250.4 1470-1783 [c](S) 2.4 $\times 10^{-7}$ 202.7 1470-1783 cfioning		[147]	⁴⁴ Ti	6.4 × 10 ⁻⁶	257	1173-1573	(S) Serial sectioning	1970
2.4 $\times 10^{-7}$ 202.7 $\int t c \int serial sectioning$		[148]	44°Ti	4.6 × 10 ⁻⁶	250.4	1470-1783		1973
				7.4 X 10	11.707		$\pm c$) serial sectioning	

TABLE I (continued)							
Substance	Ref.	Diffusing element	D_{0} (m ² s ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
	[149]	Ti	6.8×10^{-7}	191 ± 13	1773-1973	(S)	
Thulium oxide	[151]	Ц ф 0	-1.14×10^{-6}	$(\Delta H_{ m m} \simeq 238)$ 190.4	1273 - 1373 1288 - 1508	(S) Thermogravimetry and S.S. (S) Thermogravimetry	1978 1968
(Tm ₂ O ₃)							
Uranium oxide	[152]	⁴¹ Am	3 × 10-°	384.6	1473-1773	(P) α energy degradation	1965
(100_{2+x})	[152]	dN ^{7 E2}	2.9 ×10 ⁻⁴	455.6	1473-1773	(P) α energy degradation	1965
	[153]	0	3.8 ×10 ⁻⁴	271.7	1173-1373	diffusion in an electric field	1967
	[154]	081	ł	ì	1273 ± 1	$D = (1.3 - 3.4) \times 10^{-14}$: spark source	1967
		I				spectrometry analysis	
	[155]	0	I	1	1293	$D = 1.04(\pm 0.05)10^{-14}$: analysis of secondary ionic emission for ¹³ O/ ¹⁶ O ratio	1968
	11561	0	9.9×10^{-3}	238 ± 8	1158-2108	(P) Thermogravimetry	1969
	[157]	081	2.6×10^{-5}	248	1053-1523	(P) α energy degradation	1969
	[158]	0	5 × 10 ⁻⁵	191 ± 15	873-1373	Electrical conductivity	1970
	[159]	0	I	1	1198 ± 5	$D = 1.8 \times 10^{-16}$	
				I	1298 ± 5	$D = 2.4 \times 10^{-16}$ (P) nuclear reaction	
			i	I	1498 ± 5	$D = 3.7 \times 10^{-14} \left({}^{18}O(p, \gamma) {}^{19}F \right)$	1771
			1	I	1698 ± 5	$D = 6.9 \times 10^{-14}$	
	[160]	0 ₈₁	5×10^{-9}	87.8	673-1173	UO _{2.006})	
			10×10^{-9}	87.8	673-1073	UO2.020 18.00 201 9E	1075
			2.7×10^{-8}	89.9	773-1073	$UO_{2,100} = U(P, \gamma) = F$	7161
			$\approx 6 \times 10^{-8}$	\simeq 92	1073-1183	UO _{2.16}) nuclear reaction	
	[191]	C	1	190.9	473-723	IIO. Thermogravimetry	1974
	[162]		6.25×10^{-8}	97 ± 16	833-1073	V_{10}^{2} , $^{18}O(p, n)^{18}F$ and $^{17}O(q, n)^{18}F$	1975
	,	•				reactions	
	[152]	Pa	2.5×10^{-4}	449.8	1473-1773	(P) α energy degradation	1965
	[163]	14 Pm	3.5×10^{-10}	237.4	1393-1683	(P) Radiotracer experiments	1961
	[152]	nd*52	3.4 × 10 ⁻⁵	406.7	1473-1773	(P) α energy degradation	1965
	[152]	Th	1.6×10^{-5}	409.6	1473-1773	(P) α energy degradation	1965
	[164]	Ω_{sez}	ų	1	1773	$\log_{10} D = (-14.8 + 1.9 \log x) \text{ for}$	1967
						$(0.007 \le x < 0.17)$	
	[165]	Ω^{233} U	2.04×10^{-7}	371.6	1673-1923	$UO_{2,01}(P), (S)$	
			2.79 × 10 ⁻⁶	396.7	1673-1873	$UO_{2,03}$ (α energy degradation	1968
			1.09×10^{-4}	438.9	1673-1923	UO, III	
			6.79×10^{-7}	338.2	1623-1723	$10_{2.15}$	
	[166]	Ω^{233}	I	1	1673	$D < 10^{-21}$, $UO_{2,025}$ (S)	1968
						a energy degradation	
	[/91]	D	ł	463 ± 29	14/3-18/3		1969
			ł	1	1773	$\log_{10} D = (-14.85 + 1.5 \log x)$	1

C TABLE I (continued)							
A Substance	Ref.	Diffusing	Do	0	Temperature	Comment	Year
		element	(m ² s ⁻¹)	(kJ mol ⁻¹)	range (K)		
	[168]	Ωεε2	6.8×10^{-9}	411 ± 41	1893-2283	(S) α energy degradation	1969
	[169]	Y19	6.8×10^{-12}	194	1423-1723	(P) Radiotracer experiments	1961
	[169]	1Z ²⁶	1.6 × 10 ⁻¹⁰	248	1393-1692	(P) Radiotracer experiments	1961
Vanadium oxide (V, O,)	[170]	0	2	255	833–923	$p_{O_2} = 0.16$ atm, gas-solid isotope exchange	1972
Yttrium oxide	[171]	0	6.06×10^{-10}	81.8	1337-1514	(S) Thermogravimetry	1968
(Y ₂ O ₃)	[172]	γ19	1.65 × 10 ⁻⁶	289.3	1637-1943	(P) Serial sectioning	1969
Zinc oxide	[173]	AI	5.3×10^{-7}	264.1	1053-1163	(P) Photometric method	1969
(ZnO)	[174]	<u>C</u>	1.1×10^{-4}	383.7	1381-1556	(S) Atomic absorption analysis	1974
	[175]	ũ	2×10^{3}	463 ± 10	1373-1523	(S) Atomic absorption analysis	1971
	[173]	Ga	3.6	361.5	1003 - 1073	(P) Photometric method	1969
	[174]	Mn	3.2×10^{-7}	276.7	1377-1563	(S) Atomic absorption analysis	1974
	[176]	0	0.105	394.6	1423-1673	(S) gas-solid isotope exchange	1970
	[177]	Oer	1.2×10^{-14}	124 ± 7	1213-1413	(S) Proton activation analysis	1973
	[178]	\mathbf{Zn}	1	197 ± 17	573-1073	Mass spectroscopic study of the evaporation	1967
						of Zn from ZnO	
Zirconjum oxide	[179]	0	1.05×10^{-7}	122.5	673-1123	Calculated from oxidation data	1967
(ZrO_1)			7.11×10^{-6}	140.5	1323-1473	Carvative II VIII VAIMa HOII Uata	
	[180]	0	9.73 × 10 ⁻⁷	234 ± 10	1073-1273	(S) $p_{O_2} = 0.4$ atm, gas-solid isotope	1968
						excnange	
	[181]	0	2.88×10^{-8}	118.7	873-1123	$p_{0,} = 0.53$ atm, growth kinetics	1968
	[182]	0	1.36×10^{-8}	118.7	1148-1323	Growth kinetics	1968
	[183]	081	1	t	1263	$D = 1.9 \times 10^{-16}$ (S) isotope exchange	1970
	[184]	081	2.34×10^{-6}	189.4	873-1273	$p_{0,} = 0.92 \text{ atm, gas-solid isotope exchange}$	1971

TABLE II Self- and impurity	diffusion in "	multiple oxides"	$(A_x B_y O_z)^*$				
Substance	Ref.	Diffusing element	D_0 (m ² sec ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
RaTiO.	[185]	131Ba	R × 10 ⁻⁵	372	1157_1453	(b)	1053
	[186]	¹⁸ O		1 1	1073	$D = 26 \times 10^{-14}$	0001
	[224])	I	1	1173	$D = 1.6 \times 10^{-13}$ [technical] gas-solid	
			I		1273	$D = 2.5 \times 10^{-13}$ grade (isotope	1972
			I	ł	1373	$D = 3.5 \times 10^{-13}$ (exchange,	
			I	I	1273	$D = (2.1-2.3) \times 10^{-13}$ mass spec.	
						monocrystals /	
	[185]	٤1Ti	I	$\simeq 293$	I	(P) Radiotracer experiments	1953
CaFe ₂ O ₄	[187]	45Ca	3×10^{-3}	360	1163-1313	(P) Radiotracer experiments	1952
	[187]	⁵⁹ Fe	3.2×10^{-4}	301	1108 - 1365	(P) Radiotracer experiments	1952
$CaWO_4$	[188]	W	5×10^{-3}	209 ± 13	1173-1373	Estimated from the reaction of CaO and WO ₃	1975
	[189]	185W	2.9×10^{-9}	208.2	CCC1 CC31	Tc (S)	1004
			5.1×10^{-8}	227.5	67/1-6761	c Gruzin	C/ 6T
CoAl ₂ O ₄	[190]	•°Co	8×10^{-4}	355.3	1812-2043	(P) Radiotracer experiments	1962
$CoCr_2O_4$	[191]	۰ C o	1×10^{-7}	214	1673 - 1873	(P) Serial sectioning	1958
	[192]	۰ 0 0,	8×10^{-3}	376.2	1755-1968	(P) Radiotracer experiments	1962
	[191]	51 Cr	2×10^{-4}	293	1673-1873	(P) Serial sectioning	1958
	[192]	51Cr	3×10^{-2}	355.3	1755-1968	(P) Radiotracer experiments	1962
$CoFe_2D_4$	[193]	۰Co,		I	1453	(P) $(d \log D^*/d \log p_{\Omega_*}) = -0.61, +0.85$	1964
	[194]	۰°Co	4.55×10^{-3}	271 ± 10	1504 - 1663	$Co_{1-x}Fe_{2+x}O_4$ (x = 0.003)	1976
	[194]	⁵⁹ Fe	7×10^{-2}	385 ± 16	1526 - 1668	(S) Radiotracer experiments	1976
Co ₂ TiO ₄	[195]	"Co	5	397.1	1539-1766	(P) Radiotracer experiments	1962
$\operatorname{Fe}_2(\operatorname{MoO}_4)$	[196]	⁵⁹ Fe	3.16×10^{-6}	198 ± 16	873-1023		3201
	[196]	M281	2×10^{-11}	100 ± 50	873-973	(F) Absorption	C/ 61
$LaFe_2O_3$	[197]	⁵⁹ Fe	1.6×10^{-4}	355.3)) Gruzin	
			1.7×10^{-5}	313.5	1513-1693	Absorption	1969
	[197]	140La	3.7×10^{-6}	271.7) Gruzin	
			1.55×10^{-7}	225.7		d absorption	
LiNbO ₃	[198]	Co	3.89×10^{-10}	129.2	1243-1353	Based on measurements of	1977
	[198]	Cr	1.33×10^{-6}	173.5	1113-1333	f refractive index	
	[199]	Cs	3.2×10^{-12}	76.1	1073-1373	(S)	
	[199]	Na	4.6×10^{-14}	34.3)	073 1373	(S) $\parallel c$	1976
			2.5×10^{-13}	51.8	C/CT-C/0	(S) $\perp c$	
	[661]	Nb	2.0×10^{-11}	102.8	1073 - 1273	(S)	
	[198]	Ni	3.11×10^{-7}	198.6	1243-1423	Based on measurements of refractive index	1977
	[200]	0	3.03×10^{-10}	122.9	1000 - 1200	$p_{0,} = 0.08 \text{ atm}$, (S) isotope exchange	1969
	[199]	Rb	2×10^{-13}	59.4	072 1773	(S) $ c$	9201
			6.3×10^{-13}	70.2]	0177-010	(S) T <i>c</i>	1710

C TABLE II (continued)							
9 Substance	Ref.	Diffusing element	D_{0} (m ² sec ⁻¹)	Q (kJ mol ⁻¹)	Temperature range (K)	Comments	Year
	[201]	II		210.2	(1273 (1323	$D = 5.06 \times 10^{-17}$ electron $D = 1.06 \times 10^{-16}$ (S) microbrobe	1978
					1373	$D = 2.13 \times 10^{-16}$ analysis	
	[198]	Zn	2.26×10^{-9}	154.2	1303-1493	Based on measurements of refractive index	1977
$MgAl_2O_4$	[202]	AI	8.9×10^{-5}	439	1703-2013	Electron microprobe analysis	1972
	[203]	²⁸ Mg	2×10^{-2}	360.5	1173-1673	(P) Radiotracer experiments	1958
	[204]	0 ₈₁	0.15	568.5	1623-1873	(S) Gas-solid isotope exchange	1972
	[205]	0 ⁸¹	8.9×10^{-3}	438.5	1705-2013	(S) Gas-solid isotope exchange	1974
	[206]	0 ₈₁	3.8 ×10 ⁻²	384.1	1583-1967	(P) Gas-solid isotope exchange	1975
Mg ₂ TiO ₄	[207]	0	2.3×10^{-3}	393 ± 21	1353 - 1723	(S) Gas-solid isotope exchange	1977
MnFe ₂ O ₄	[208]	Ũ	ł	241.0	573-693	Electrical conductivity	1974
Na ₂ WO ₄	[209]	Ag	0.13	154 ± 19	862-967	Electrochemical cell method	1976
NdFeO3	[210]	59Fe	2×10^{-6}	280.1		Absorption	
			6.3×10^{-5}	334.4		Sectioning	1970
		bN ⁷ ¹⁴	1.2×10^{-4}	342.8		Absorption	
			1.6×10^{-3}	388.7		Sectioning	
NiAl ₂ O ₄	[211]	51Cr	1.17×10^{-7}	209	1173-1373	Sectioning	1958
	[212]	۶۶Ni	3.4×10^{-8}	229.9	1273-1673	(P) Sinter, radiotracer experiments	1956
	[213]	e3Ni	3×10^{-9}	222.7	1153-1661	(P) Sinter, radiotracer experiments	1958
NiCr ₂ O	[214]	51Cr	7.4×10^{-3}	303.7	1223-1673	(P) Sinter, radiotracer experiments	1956
	[215]	51Cr	2.03×10^{-9}	187.3	1173-1373	Serial sectioning	1958
	[216]	51Cr	2×10^{-4}	418	1795-1940	(P) Radiotracer experiments	1962
	[215]	s9.Fe	1.35×10^{-7}	255	1273-1473	Serial sectioning	1958
	[214]	iN ²	8.5×10^{-3}	312.3	1423-1773	(P) Sinter, radiotracer experiments	1956
	[217]	iN ⁶³	1.5×10^{-7}	256.4	1133-1550	(P) Sinter, radiotracer experiments	1958
	[218]	0,1	1.7 ×10 ⁻⁶	273.8	1473-1823	(P) Gas-solid isotope exchange, mass spec.	1960
NiFe ₂ O ₄	[219]	55Fe	$\simeq 1.7 \times 10^{-3}$	343.2	1123-1473	R.A.	1960
	[220]	^{s9} Fe	8.2 × 10 ⁻⁴	324 ± 22	1473-1673		1077
		63Ni	5.5×10^{2}	510 ± 25	1573-1723	(F) N.A.	1161
	[221]	081	5.0 ×10 ⁻⁷	255.5	1413-1613	(S) Gas-solid isotope exchange	1970
PbTiO ₃	[222]	Pb	7.2×10^{-8}	181.8	1273-1348	Mass spec. Study of vapourization of PbTiO ₃	1972
$SnZn_2O_4$	[223]	Sn	23	455.6	1273-1573	(P) (Sn isotopes: 119, 121, 123, 125)	1956
		٥sZn	3.7×10^{-3}	318.9	1273-1573	(P)	
SrTiO ₃	[224]	0 ⁸¹	1.6×10^{-11}	64.8	10981473	Dislocation density 1.4 $\times 10^{6}$ cm ⁻² (S) Gas-	1965
			1.2 × 10 ⁻⁹	122.5	1123-1798	Dislocation density $6.6 \times 10^5 \text{ cm}^{-1}$ solid	
	ſ) exchange	
	[225]	0	6×10^{-3}	238 ± 67	973-1248	(S) Capacitance manometry method	1975

TABLE II (continued)							
Substance	Ref.	Diffusing element	D_0 $(m^2 \sec^{-1})$	Q (kJ mol ⁻¹)	Temperature range (K)	: Comments	Year
	[226]	081	$\begin{array}{rrr} 3.3 \times 10^{-10} \\ 3.6 \times 10^{-11} \end{array}$	95.3 66.9	1333-1673 1333-1573	(S) (P) Isotope exchange	1975
	[227]	⁸⁹ Sr	4×10^{-4}	292.3	1273-1573	(P) Radiotracer experiments	1960
Y _a Fe, 0,,	[228]	081	4 $\times 10^{-5}$	273.4	1373-1673	(S), (P) Gas-solid isotope exchange	1964
4 7 9	[229]	90,91Y	34	499.9 ± 51	1573-1773	(S) Radiotracer experiments	1977
ZnAl, O,	[230]	uZs,	2.5×10^{-2}	326.8	1273-1673	(P) Radiotracer experiments	1956
ZnCr, O,	[231]	^{s1} Cr	8.9×10^{-4}	339.3	1273-1573	(P) Sinter, radiotracer experiments	1956
8 4		٥sZn	6×10^{-3}	358.6	1273-1673	(P) Sinter, radiotracer experiments	1956
ZnFe, O,	[232]	⁵⁹ Fe	8.5×10^{-2}	343.2	1023 - 1573	(P) Radiotracer experiments	1952
	[233]	۳Zsə	8.8×10^{-2}	360.5	1173-1623	(P) Radiotracer experiments	1952

*Abbreviations used in Tables I and II

- Single crystal material
- Polycrystaline material
- analysis by serial sectioning technique
- analysis by residual activity technique
- diffusion coefficient measured parallel to c-axis diffusion coefficient measured perpendicular to c-axis Chemical diffusion coefficient $\begin{array}{l} \textbf{(S)} \\ \textbf{(P)} \\ \textbf{(P$

4. General diffusional trends

For self-diffusion in oxides it is generally found that the smaller species (in most cases the metal ion) diffuses faster than the larger species. Exceptions to this rule are mainly those materials which can easily become oxygen deficient [1]. In the "low temperature" region some oxides have metal and oxygen diffusion rates within a few orders of magnitude of each other, and in some cases there may be a cross-over point below which the oxygen diffuses faster than the metal ion. These include α -Al₂O₃, α -Fe₂O₃, Nb₂O₅, Ta₂O₅ and WO₃ [1, 2], but there is some contradictory evidence [2].

There have been numerous studies of impurity diffusion in oxides, but few systematic examinations, so it is difficult to extract trends with any reliability. Wuensch and Vasilos [22] measured the diffusion of Fe, Ni and Co in MgO and noted a linear relation between the quotient of the ionic radius (r) and the polarizability (α) of the diffusing ion, and Q. The diffusion of Ca and Mg in MgO also follow this behaviour [23], but the trend is not universal as the agreement with the results for Be are very poor [24]. Mortlock and Price [25] analysed the data for the transport of several species in MgO, and found that D could be expressed in terms of a rapidly varying function of r and temperature for a limited range of r. Crow [26] measured the diffusion rates of Fe. Co and Ni in CoO and NiO, and found that, in general, the lower the atomic number of the diffusing species, the faster the diffusing rate and the lower the activation energy. The relations between the various parameters are not simple, and more studies of this type would obviously be helpful.

5. Use of the bibliograph

The format of the bibliography is essentially the same as that of its predecessor [1], and is intended as a guide to the best available self-diffusion data since 1967, and impurity diffusion data since 1950. Whilst it incorporates one earlier bibliography [27] it does not contain any of the data given by Harrop [1], and seeks to complement the latter publication. The present work represents an attempt to cover the literature up to May 1979. For convenience the data have been subdivided into "binary oxides" (Table I), and "multiple oxides" (Table II). References are given in the Appendix.

The data contained in the bibliography are limited to those which can conveniently be presented in tables. Where possible this comprises the specification of: diffusing species, D_0 , Q, temperature range of measurement, nature of sample (single crystal or polycrystalline), experimental conditions and techniques of measurement. Experimental details are contained in the comments column. The absence of information does not necessarily imply that it cannot be obtained from the appropriate reference, and in some cases (where D is a function of pO_2 , etc.) it is essential to consult the original publication.

Using values of D_0 and Q from the tables, diffusion coefficients may be readily calculated by Equation 2 for the temperature range where the original measurements were made. Care should be taken to ensure that the reported experimental conditions are compatible with the situation of interest as far as possible, and that the data do refer to the movement of the ion, and not the defect which enables it to move. The notes of caution detailed by Harrop [1] are also appropriate to the present bibliography.

Acknowledgements

I am most grateful to Mrs C. Freer for assistance with the literature search and preparation of the tables, Professor L.W. Barr for helpful discussions and comments on the manuscript and to the N.E.R.C. for financial support.

General references

- 1. P. J. HARROP, J. Mater. Sci. 3 (1968) 206.
- J. B. WAGNER, "Atomic Diffusion in Semiconductors", edited by D. Shaw, (Plenum, New York, 1973) p. 543.
- 3. A. ATKINSON and R. I. TAYLOR, J. Mater. Sci. 13 (1978) 427.
- 4. B. BURTON and G. L. REYNOLDS, *ibid* 13 (1978) 219.
- 5. A. J. MOULSON, W. R. PHILLIPS and P. POPPER, "Special Ceramics, 1964", edited by P. Popper (Academic Press, London, 1965) p. 199.
- C. R. A. CATLOW, J. CORISH, K. M. DILLER, P. W. M. JACOBS and M. J. NORGETT, J. Phys. C. Solid State Phys. 12 (1979) 451.
- B. J. WUENSCH, W. C. STEELE and T. VASILOS, J. Chem. Phys. 58 (1973) 5258.
- 8. P. SHEWMON, "Diffusion in Solids" (McGraw-Hill, New York, 1963) 203pp.
- 9. N. L. PETERSON, "Solid State Physics", Vol. 22, Edited by F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York, 1968) p. 409.
- N. L. PETERSON and W. K. CHEN, "Mass Transport Phenomena in Ceramics", edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975) p.41.

- 11. G. C. T. WEI and B. J. WUENSCH, J. Amer. Ceram. Soc. 59 (1976) 295.
- 12. L. S. DARKEN, Trans. Met. Soc. AIME 175 (1948) 184.
- 13. J. M. WIMMER, R. N. BLUMENTHAL and I. BRANSKY, J. Phys. Chem. Solids 36 (1975) 269.
- 14. B. C. HARDING and D. M. PRICE, *Phil. Mag.* 26 (1972) 253.
- 15. P. HEMBREE and J. B. WAGNER, *Trans. Met. Soc. AIME* 245 (1969) 1547.
- 16. R. DIECKMANN and H. SCHMALZRIED, Ber. Bunsenges. Phys. Chem. 81 (1977) 344.
- F. H. WOHLBIER, (ED.) "Diffusion and Defect Data" (Diffusion Information Center, Cleveland, Ohio): Vol. 2 (1968) pp. 93, 234, 403; Vol. 3, (1969) pp. 99, 241, 546; Vol. 4, (1970) p. 151.
- D. J. REED, B. J. WUENSCH and H. K. BOWEN, "Research in Materials", Annual Report, M.I.T. (1978) p. 241.
- 19. A. ATKINSON and R. I. TAYLOR, *Thin Solid Films* **46** (1977) 291.
- 20. N. N. GREENWOOD and A. T. HOWE, J.C.S. Dalton Trans. 1 (1972) 122.
- R. DIECKMANN, T. O. MASON, J. D. HODGE and H. SCHMALZRIED, Ber. Bunsenges. Phys. Chem. 82 (1978) 778.
- B. J. WUENSCH and T. VASILOS, J. Chem. Phys. 36 (1962) 2917.
- 23. J. RUNGIS and A. J. MORTLOCK, *Phil. Mag.* 14 (1966) 821.
- 24. B. C. HARDING and A. J. MORTLOCK, J. Chem. Phys. 45 (1966) 2699.
- 25. A. J. MORTLOCK and D. M. PRICE, *ibid* 58 (1973) 634.
- W. CROW, Thesis, Ohio State University (1969), University Microfilms 70-14 000 (known through [2]).
- J. ASKILL, "Tracer Diffusion Data for Metals, Alloys and Simple Oxides" (I.F.I. Plenum, New York, 1970).

Appendix

The references are numbered consecutively, but subdivided into individual oxides. Experimental details and results of the diffusion studies are given in Tables I and II.

Al_2O_3

- 1. W. FIEDLER and O. BOBLETER, Atomkernenergie 13 (1968) 57; Diffusion Data 2 B19.
- 2. G. H. FRISCHAT, Ber. Deut. Keram. Ges. 48 (1971) 441 (in German).
- 3. V. I. IZVEKOV and K. M. GORBUNOVA, Fiz. Metal. i Metalloved Akad. Nauk. SSSR 7 (1959) 713 (in Russian); Chem. Abs. 54, 10743.
- 4. H. W. HENNICKE and H. H. STURHAHN, Tonindustrie Ztg. Keram Rundsch. 95 (1971) 127; Chem. Abs. 75, 39884.
- Y. OISHI, K. ANDO and K. MATSUHIRO, Yogyo Kyokai Shi 85, (1977) 522; Chem. Abs. 87, 173090.
- 6. D. J. REED, B. J. WUENSCH and H. K. BOWEN,

"Research in Materials", Annual Report M.I.T. (1978) p. 241.

- 7. O. BOBLETER, W. FIEDLER and F. GRASS, Atomkernenergie 10 (1965) 261 (in German); Chem. Abs. 66, 51446v.
- 8. J. B. WAGNER, "Defects and Transport in Oxides", edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

B_2O_3

9. A. I. GRIGOR'EV and D. I. POLISHCHUK, Fiz. Aerodispersnykh Sist. 8 (1973) 87; Diffusion Data 10, E159.

BaO

10. S. P. MURARKA and R. A. SWALIN, J. Phys. Chem. Solids. 32 (1971) 2015.

BeO

- 11. C. F. CLINE, H. W. NEWKIRK, W. L. BARMORE and R. R. VANDERVOORT, J. Amer. Ceram. Soc. 50 (1967) 221.
- 12. H. J. de BRUIN, J. Aust. Inst. Met. 14 (1969) 247.
- M. BLOSER, D. ROHRIG and R. HECKER, Nukleonik 10 (1967) 64 (in German); Diffusion Data 2, B17.
- 14. D. H. BRADHURST and H. J. de BRUIN, J. Aust. Ceramic Soc. 5 (1969) 21.

CaO

15. V. KUMAR and Y. P. GUPTA, J. Phys. Chem. Solids 30 (1969) 677.

CeO₂

- I. V. VINOKUROV, Izv. Adad. Nauk. SSSR Neorg. Mater 6 (1970) 31 (in Russian); Diffusion Data 4, D94.
- 17. B. C. STEELE and J. M. FLOYD, Proc. Brit. Ceram. Soc. 19 (1971) 179.

CoO

- W. B. CROW, Thesis, Ohio State University (1969) 81pp; University Microfilms 70-14 000.
- 19. W. K. CHEN, N. L. PETERSON and W. T. REEVES, *Phys. Rev.* 186 (1969) 887.
- W. K. CHEN and N. L. PETERSON, J. Phys. Chem. Solids 34 (1973) 1093.
- 21. F. MORIN, *Canad. Met. Q.* 14 (1975) 105 (in French); *Chem. Abs.* 83, 121051.
- S. MROWEC and K. PRZBYSKI, "Reactivity of Solids (Proceedings Eighth International Symposium)", edited by J. Wood, O. Lindquist, C. Helgesson and N. G. Vannerberg (1976) p. 177.
- R. DIECKMANN, Z. Phys. Chem. (Wiesbaden) 107 (1977) 198; Chem Abs. 89, 136056.
- 24. S. F. RAHMAN and M. F. BERARD, J. Amer. Ceram. Soc. 60 (1977) 67.
- 25. W. K. CHEN and N. L. PETERSON, J. Phys. Chem. Solids 34 (1973) 1093.
- 26. W. K. CHEN and R. A. JACKSON, *ibid* 30 (1969)

1309.

- R. H. CHANG, W. STEWART and J. B. WAGNER, "Reactivity of Solids (Proceedongs Seventh International Conference)" edited by J. J. Anderson, M. W. Roberts and F. S. Stone (Chapman and Hall, London, 1972) p. 231.
- J. M. WIMMER, R. N. BLUMENTHAL and I. BRANSKY, J. Phys. Chem. Solids 36 (1975) 296.

Cr_2O_3

- D. R. KINLOCH III, Thesis, University of Delaware (1970) 206pp; University Microfilms 71-6442; C. E. BIRCHENALL, private communication (1979).
- H. W. HENNICKE and H. H. STURHAHN, Tonindustrie Ztg. Keram. Rundschau 95 (1971) 127; Chem. Abs. 75, 39884.
- D. V. IGNATOV, I. N. BELOKUROVA and I. N. BELYANIN, *Izv. Akad. Nauk SSSR Moscow* (1958) 326 (in Russian); see also US Atomic Energy Commission Report Np - tr - 448 (1958) p. 256; *Chem. Abs.* 54, 10737.
- 32. B. BURTON and G. L. REYNOLDS, J. Mater Sci. 13 (1978) 219.
- 33. A. U. SEYBOLT, Trans. Met. Soc. AIME 242 (1968) 752.
- 34. J. B. WAGNER, "Defects and Transport in Oxides", edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

Cu_2O

- 35. A. I. ANDRIEVSKII, A. V. SANDULOVA and M. I. YUREVICH, Fiz. Tverd. Tela 2 (1960) 624 (in Russian); see also Sov. Phys. Solid State (English translation) 2 (1960) 581; Chem Abs. 55, 7965a.
- S. MROWEC and A. STOKLOSA, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 18 (1970) 523; Diffusion Data 5, D19.
- 37. E. IGUCHI, K. YAJIMA and Y. SATO, J. Crystal Growth 24-25 (1974) 572.
- W. J. TOMLINSON and J. YATES, J. Phys. Chem. Solids 38 (1977) 1205.
- A. V. SANDULOVA, M. I. DRONYUK, V. M. RYBAK and K. S. SHCHERBAI, Ukr. Fiz. Zh. 7 (1962) 289 (in Russian); Chem. Abs. 57, 9239c.
- 40. A. V. SANDULOVA and A. I. ANDRIEVSKII, Radio Eng. Electron. Phys. (USSR) 12 (1956) 1492; (known through general reference [2]: J. B. WAGNER, p. 599, ref. 124).
- 41. A. V. SANDULOVA and Y. C. CHANG, Fiz Tverd. Tela 2 (1960) 847 (in Russian) Chem. Abs. 55, 12973i.

Dy_2O_3

42. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, J. Amer. Ceram. Soc. 51 (1968) 643.

 Er_2O_3

43. M. F. BERARD and D. R. WILDER, J. Amer. Ceram. Soc. 52 (1969) 85.

- 44. W. F. SCHIAVI, Thesis, Iowa State University (1976); (known through reference [45]: R. W. SCHEIDECKER and M. F. BERARD, p. 402, ref. 6).
- 45. R. W. SCHEIDECKER and M. F. BERARD, J. Amer. Ceram. Soc. 61 (1978) 399.
- 46. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, *ibid* 51 (1968) 643.

FeO

- 47. P. HEMBREE and J. B. WAGNER, Trans. Met. Soc. AIME 245 (1969) 1547.
- P. M. VALOV, Ya V. VASIL'EV, G. V. VERIOVKIN and D. F. KAPLIN, J. Solid State Chem. 1 (1970) 215.
- 49. N. N. GREENWOOD and A. T. HOWE, J. Chem. Soc. Dalton Trans. 1 (1972) 122.
- W. K. CHEN and N. L. PETERSON, J. Phys. (Paris) 34 (1973) C9-303; Diffusion Data 10, E198.
- 51. H. R. ANAND and J. G. MULLEN, *Phys. Rev.* B8 (1973) 3112.
- R. H. CAMPBELL, Thesis Arizona State University (1969) 95pp; University Microfilms 69 – 5710.
- 53. G. J. W. KOR, Met. Trans. 3 (1972) 2343.
- C. J. FUJII and R. A. MEUSSNER, *Rep. Nav. Res. Lab. Prog.* March (1967) 27; N.R.C. Problem No. M 01-12.

Fe_2O_3

- 55. R. H. CHANG and J. B. WAGNER, J. Amer. Ceram. Soc. 55 (1972) 211.
- 56. J. B. WAGNER, "Defects and transports in Oxides", edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.
- Fe₃O₄
- 57. R. DIECKMANN, T. O. MASON, J. D. HODGE and H. SCHMALZRIED, Ber. Bunsenges. Phys. Chem. 82 (1978) 778.
- 58. R. DIECKMANN and H. SCHMALZRIED, *ibid* 81 (1977) 344.
- D. GROMAN and V.JESENAK, Silikaty 22 (1978) 317; Chem Abs. 90, 110158y.
- 60. J. E. CASTLE and P. L. SURMAN, J. Phys. Chem. 71 (1967) 4255.
- 61. Idem, ibid 73 (1969) 632.
- 62. R. FREER and Z. HAUPTMAN, *Phys. Earth Planet. Interiors* 16 (1978) 223.

 Gd_2O_3

63. C. D. WIRKUS, M. F. BERARD and D. R. WILDER, J. Amer. Ceram. Soc. 52 (1969) 456.

 Ho_2O_3

64. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, *ibid* 51 (1968) 643.

 Lu_2O_3

65. Idem, ibid 51 (1968) 643.

MgO

- 66. B. C. HARDING, Phys. Stat. Sol. B50 (1972) 135.
- 67. Idem, Phil. Mag. 27 (1973) 481.
- 68. J. RUNGIS and A. J. MORTLOCK, *ibid* 14 (1966) 821.
- B. J. WUENSCH and T. VASILOS, Natl. Bur. Stand. (US) Spec. Publ. (1967) no. 296 (1968) 95; Diffusion Data 4, D2.
- 70. B. C. HARDING, Phys. Stat. Sol. B56 (1973) 645.
- B. C. HARDING and V. K. BHALLA, *Phil. Mag.* 24 (1971) 485.
- B. J. WUENSCH and T. VASILOS, J. Chem. Phys. 36 (1962) 2917.
- 73. H. TAGAI, S. IWAI, T. ISEKI and M. SAHO, Radex Rundschau 4 (1965) 577.
- 74. G. W. WEBER, W. R. BITLER and V. S. STUBICAN, J. Amer. Ceram. Soc. 60 (1977) 61.
- 75. G. KATZ, S. KACHI and R. ROY, *Jap. J. Appl. Phys.* 8 (1969) 429; *Ceram. Abs.* (1970) 128b.
- 76. B. C. HARDING, Phys. Stat. Sol. B56 (1973) 645.
- 77. B. C. HARDING and D. M. PRICE, *Phil. Mag.* 26 (1972) 253.
- B. J. WUENSCH, W. C. STEELE and T. VASILOS, J. Chem. Phys. 58 (1973) 5258.
- 79. R. A. WEEKS and A. CHATELAIN, J. Amer. Ceram. Soc. 61 (1978) 297.
- 80. J. MIMKES and M. WUTTIG, ibid 54 (1971) 65.
- B. J. WUENSCH and T. VASILOS, J. Chem. Phys. 54 (1971) 1123.
- H. HASHIMOTO, M. HAMA and S. SHIRASAKI, J. Appl. Phys. 43 (1972) 4828.
- 83. S. SHIRASAKI and M. HAMA, *Chem Phys. Letters* 20 (1973) 361.
- 84. T. SOLAGA and A. J. MORTLOCK, *Phys. Stat.* Sol. A3 (9170) 247K.
- T. SOLAGA, M. Sc. thesis, Australian National University, Canberra; (known through reference [84]: T. SOLAGA and A. J. MORTLOCK, p. 250K).
- 86. A. J. MORTLOCK and D. M. PRICE, J. Chem. Phys. 58 (1973) 634.
- 87. M. F. BERARD, J. Amer. Ceram. Soc. 54 (1971) 58.

MnO

 J. B. PRICE and J. B. WAGNER, J. Electrochem. Soc. 117 (1970) 242.

MoO_3

- V. P. ELYUTIN, T. G. LENSKAYA, Yu. A. PAVLOV and V. P. POLYAKOV Dokl. Akad. Nauk. SSSR (Tech. Phys.) 199 (1971) 62; Diffusion Data 6, D56.
- 90. Yu. A. PAVLOV, V. P. POLYAKOV, Yu. S. SKROBUT, G. Ya. MESHCHERYAKOV and E. Yu. ZAMALIN, *Izv. Vyssh. Uchebn. Zaved.*, *Chem. Metall.* 5 (1975) 26; *Diffusion Data* 13, 126.

 Nb_2O_5

- 91. J. S. SHEASBY and B. COX, J. Less-Common Metals 15 (1968) 129.
- 92. J. S. SHEASBY, W. W. SMELTZER and A. E. JENKINS, J. Electrochem. Soc. 115 (1968) 338.
- 93. V. P. ELYUTIN, T. G. LENSKAYA, Yu. A. PAVLOV and V. P. POLYAKOV, Dokl. Akad. Nauk. SSSR (Tech. Phys.) 199 (1971) 62; Diffusion Data 6, D56.
- 94. Y. MASSIANI, J. P. CROUSIER and R. STREIFF, C.R. Hebd. Seances Acad. Sci. Ser. C. 282 (1976) 567; Diffusion Data 14, 129.
- 95. Y. MASSIANI, J. P. CROUSIER and R. STREIFF, J. Solid State Chem. 23 (1978) 415.

Nd₂O₃

 G. D. STONE, Thesis, Arizona State University (1968); University Microfilm 68-6807; Diffusion Data 3, D41.

NiO

- 97. W. B. CROW, Thesis, Ohio State University (1969) 81pp; University Microfilms 70-14 000.
- 98. W. K. CHEN and N. L. PETERSON, J. Phys. Chem. Solids 33 (1972) 881.
- 99. J. B. WAGNER, in "Defects and transport in oxides", edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.
- 100. M. S. SELTZER, J. Electrochem. Soc. 118 (1971) 802.
- 101. W. K. CHEN, N. L. PETERSON and L. C. ROBINSON, J. Phys. Chem. Solids 34 (1973) 705.
- 102. R. A. PERKINS and R. A. RAPP, Met. Trans. 4 (1973) 193.
- 103. W. D. STEWART and J. B. WAGNER, J. Electro-Chem. Soc. 122 (1975) 570.
- 104. R. MORLOTTI, Z. Naturforsch. 24A (1969) 441; Diffusion Data 3, D58.
- 105. M. L. VOLPE and J. REDDY, J. Chem. Phys. 53 (1970) 1117.
- 106. M. J. GRAHAM, D. CAPLAN and M. COHEN, J. Electrochem. Soc. 119 (1972) 1265.
- 107. S. M. KLOTSMAN, A. N. TIMOFEEV and I. S. TRAKHTENBERG, *Fiz. Tverd. Tela* 14 (1972) 894; *Diffusion Data* 7, 82.
- 108. Y. IKEDA and K. NII, Trans. Jap. Inst. Met. 15 (1974) 441; Diffusion Data 12, 180.
- 109. J. D. CHRISTIAN and W. P. GILBREATH, Oxid. Met. 9 (1975) 1.
- 110. A. ATKINSON and R. I. TAYLOR, J. Mater. Sci. 13 (1978) 427.
- C. MONTY, C. DUBOIS, R. TAYLON and S. BARBEZAT, Colloq. Metall. 19 (1976) (Diffus. Milieux Condens: Theor. Appl. 2) 813 (in French); Chem. Abs. 89, 11805w.
- 112. R. A. CHANG, W. STEWART and J. B. WAGNER, in "Reactivity of Solids (Proceedings Seventh International Conference)", edited by J. J. Anderson, M. W. Roberts and F. S. Stone (Chapman and Hall, London, 1972) p. 231.
- 113. D. R. CHANG, R. NEMOTO and J. B. WAGNER, Met. Trans. 7A (1976) 803.

- 114. H. Y. HOWNG and J. B. WAGNER, J. Phys. Chem. Solids 39 (1978) 1019.
- 115. J. DEREN, Z. M. JARZEBSKI, S. MROWEC and T. WALEC, Bull. Akad. Pol. Sci. Ser. Sci. Chem. 19 (1971) 153.
- 116. J. NOWOTNY and J. B. WAGNER, J. Amer. Ceram. Soc. 56 (1973) 397.
- 117. J. NOWOTNY and A. SADOWSKI, *ibid* 62 (1979) 24.

PbO

118. L. HEYNE, N. M. BEEKMANS and A. de BEER, J. Electrochem. Soc. 119 (1972) 77.

Pr₇O₁₂

- 119. G. R. WEBER and L. EYRING, Ad. Chem. Phys. 21 (1971) 253.
- 120. K. H. LAU and L. EYRING, Proceedings of the 10th Rare Earth Research Conference (CONF – 730402 – PL) edited by C. J. Kevane and T. Moeller, (NTIS; Springfield. Va., USA, 1973) p. 184.
- 121. K. H. LAU, D. L. FOX, S. H. LIN and L. EYRING, High Temp. Sci. 8 (1976) 129.

PuO₂

122. R. L. DEATON and C. J. WIEDENHEFT, J. Inorg. Nucl. Chem. 35 (1973) 649.

Sc_2O_3

123. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, J. Amer. Ceram. Soc. 51 (1968) 643.

SiO₂

- 124. D. V. MORGAN, M. J. HOWES and C. J. MADAMS, J. Electrochem. Soc. 123 (1976) 295.
- 125. G. H. FRISCHAT, Ber. Deut. Keram. Ges. 47 (1970) 364 (in German).
- 126. L. RYBACH and F. LAVES, Geochim. Cosmochim. Acta 31 (1967) 539.
- 127. G. H. FRISCHAT, J Amer. Ceram. Soc, 53 (1970) 357.
- 128. Idem, Ber. Deut. Keram. Ges. 47 (1970) 238 (in German); Diffusion Data 4, D69.

Sm_2O_3

129. G. D. STONE, Thesis, Arizona State University (University Microfilms 68-6807); Diffusion Data 3, D41.

SrO

130. S. P. MURARKA and R. A. SWALIN, J. Phys. Chem. Solids 32 (1971) 1277.

Ta₂O₅

131. V. P. ELYUTIN, T. G. LENSKAYA, Yu. A. PAVLOV and V. P. POLYAKOV, Dokl. Akad. Nauk. SSSR (Tech Phys.) 199 (1971) 62; Diffusion Data 6, D56. ThO₂

- 132. K. ANDO, Y. OISHI and T. HIKADA, J. Chem. Phys. 65 (1976) 2751.
- 133. C. K. LAM, U.T.I.A.S. Rep (1976) 212; Diffusion Data 17, 144.
- 134. H. FURUYA and S. YAJIMA, J. Nucl. Mater 25 (1968) 38.
- 135. R. J. HAWKINS and C. B. ALCOCK, *ibid* 26 (1968) 112.
- 136. A. D. KING, *ibid* 38 (1971) 347.
- 137. H. FURUYA, ibid 26 (1968) 123.
- 138. H. MATZKE, J. Phys. (Paris) 37 (1976) C7-452; Diffusion Data 16, 167.

TiO

139. T. S. LUNDY, R. A. PADGETT and M. D. BANUS, Met. Trans. 4 (1973) 1179.

TiO₂

- 140. A. LUTZE-BIRK, E. WEZRANOWSKI and M. RADWAN, Arch. Elektrotech. 16 (1967) 807 (in Polish); Diffusion Data 3, D4.
- 141. V. I. IZUEKOV and K. M. GORBUNOVA, Fiz Metal. i Metalloved. 7 (1959) 713.
- 142. D. J. DERRY, D. G. LEES and J. M. CALVERT, Proc. Brit. Ceram. Soc. 19 (1971) 77.
- 143. V. P. ELYUTIN, T. G. LENSKAYA, Yu. A. PAVLOV and V. P. POLYAKOV, Dokl. Akad. Nauk. SSSR (Tech Phys.) 199 (1971) 62; Diffusion Data 6, D56.
- 144. T. B. GRUENWALD and G. GORDON, J. Inorg. Nucl. Chem. 33 (1971) 1151.
- 145. A. N. BAGSHAW and B. G. HYDE, J. Phys. Chem. Solids 37 (1976) 835.
- 146. J. F. BAUMARD, Solid State Commun. 20 (1976) 859.
- 147. D. A. VENKATU and L. E. POTEAT, *Mater Sci.* Eng. 5 (1970) 258.
- 148. T. S. LUNDY and W. A. COGHLAN, J. Phys. Paris 34 (1973) C9-299.
- 149. K. KITAZAWA, T. KURIYAMA, K. FUEKI and T. MUKAIBO, J. Amer. Ceram. Soc. 60 (1977) 363.
- 150. J. R. ASKE and H. B. WHITEHURST, J. Phys. Chem. Solids 39 (1978) 457.

Tm_2O_3

151. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, J. Amer. Ceram. Soc. 51 (1968) 643.

UO_2

- 152. F. SCHMITZ and R. LINDNER, J. Nucl. Mater. 17 (1965) 259.
- 153. W. DORNELAS and P. LACOMBE, Compt. Rend. Acad. Sci. Paris Ser. C 265 (1967) 359 (in French); Diffusion Data 1, R30.
- 154. P. CONTAMIN and R. STEFANI, Commis. Energ. At. Rapp. 3179 (1967) 21pp, (in French); Diffusion Data 2, B9.
- 155. P. CONTAMIN and G. SLODZIAN, Compt. Rend. Sci. Paris Ser. C 267 (1968) 805 (in French); Dif-

fusion Data 3, D5.

- 156. J. T. BITTEL, L. H. SJODAHL and J. F. WHITE, J. Amer. Ceram. Soc. 52 (1969) 446.
- 157. J. F. MARIN and P. CONTAMIN, J. Nucl. Mater. 30 (1969) 16.
- 158. K. W. LAY, J. Amer. Ceram. Soc. 53 (1970) 369.
- 159. Z. HADARI, M. KROUPP and Y. WOLFSON, J. Appl. Phys. 42 (1971) 534.
- 160. P. CONTAMIN, J. J. BACMANN and J. F. MARIN, J. Nucl. Mater. 42 (1972) 54.
- 161. A. PRODAN and L. N. COJOCARU, *ibid* 52 (1974) 333.
- 162. G. E. MURCH, D. H. BRADHURST and H. J. de BRUIN, *Phil, Mag.* **32** (1975) 1141.
- 163. F. SCHMITZ and R. LINDNER, Z. Naturforsch. 16a (1961) 1096.
- 164. J. F. MARIN, H. MICHAUD and P. CONTAMIN, Compt. Rend. Sci. Paris Ser. C 264 (1967) 1633 (in French); Diffusion Data 1, R70.
- 165. R. J. HAWKINS and C. B. ALCOCK, J. Nucl. Mater. 26 (1968) 112.
- 166. D. K. REIMANN and T. S. LUNDY, *ibid* 28 (1968) 218.
- 167. Hj. MATZKE, ibid 30 (1969) 26.
- 168. D. K. REIMANN and T. S. LUNDY, J. Amer. Ceram. Soc. 52 (1969) 511.
- 169. A. B. AUSTERN and J. BELLE, J. Nucl. Mater 3 (1961) 267.

V₂O₅

170. Yu. A. PAVLOV, Yu. S. SKROBUT, V. P. POLYAKOV, G. Yu. MESHCHERYAKOV and E. Yu. ZAMALIN, *Izv. Vyssh. Zaved. Chern Met.* 7 (1972) 8.

Y_2O_3

- 171. M. F. BERARD, C. D. WIRKUS and D. R. WILDER, J. Amer. Ceram. Soc. 51 (1968) 643.
- 172. M. F. BERARD and D. R. WILDER, *ibid* 52 (1969) 85.

ZnO

- 173. V. J. NORMAN, Aust. J. Chem. 22 (1969) 325.
- 174. F. W. KLEINLEIN and R. HELBIG, Z. Phys. 266 (1974) 201; Diffusion Data 9, E148.
- 175. G. MUELLER and R. HELBIG, J. Phys. Chem. Solids 32 (1971) 1971.
- 176. J. W. HOFFMAN and I. LAUDER, *Trans. Faraday* Soc. 66 (1970) 2346.
- 177. R. ROBIN, A. R. COOPER and A. H. HEUER, J. Appl. Phys. 44 (1973) 3770.
- 178. G. P. PANASYUK, M. N. DANCHEVSKAYA and N. I. KOBOZEV, Zh. Fiz. Khim. 41 (1967) 691 (in Russian); Diffusion Data 1, R66.

ZrO_2

- 179. J. DEBUIGNE, Met. Corros Ind. 501 (1967) 186 (in French); Diffusion Data 2, B10.
- 180. A. MADEYSKI and W. W. SMELTZER, *Mater Res. Bull.* **3** (1968) 369.
- 181. C. J. ROSA and W. C. HAGEL, J. Nucl. Mater 27

(1968) 12.

- 182. C. J. ROSA and W. C. HAGEL, *Trans. AIME* 242 (1968) 1293.
- 183. D. J. POULTON and W. W. SMELTZER, J. Electrochem. Soc. 117 (1970) 378.
- 184. F. J. KENESHA and D. L. DOUGLASS, Oxid. Metals 3 (1971) 1.

BaTiO₃

- A. G. VERDUCH and R. LINDNER, Arkiv. Kemi. 5 (1953) 313; Chem. Abs. (1953) 7342F.
- 186. J. DOSKOCIL and Z. POSPISIL, *Silikaty* 16 (1972) 113; *Diffusion Data* 7, 84.

CaFe₂O₄

187. J. A. HEDVALL, C. BRISI and R. LINDNER, Arkiv. Kemi. 4 (1952) 377 (in German); Chem. Abs. (1953) 3072C.

CaWO₄

- 188. E. V. TKACHENKO, A. Ya. NEIMAN and L. A. KUZ'MINA, Izv. Akad. Nauk. SSSR Neorg. Mater. 11 (1975) 1847; Diffusion Data 13, 113.
- 189. V. V. VASHUK and I. F. KONONYUK, Dokl. Akad. Nauk. B SSR 19 (1975) 1098; Diffusion Data 15, 180.

CoAl₂O₄

190. A. MORKEL and H. SCHMALZRIED, Z. Phys. Chem. (N.F.) 32 (1962) 76 (in German).

$CoCr_2O_4$

- 191. R. SUN, J. Chem. Phys. 28 (1958) 290.
- 192. A. MORKEL and H. SCHMALZRIED, Z. Phys. Chem. (N.F.) 32 (1962) 76 (in German).

$CoFe_2O_4$

- 193. W. MULLER and H. SCHMALZRIED, Ber. Bunsenges. Phys. Chem. 68 (1964) 270.
- 194. W. K. CHEN and H. DOWNING, Phys. Stat Sol. A 37 (1976) 515.

$Co_2 TiO_4$

195. A. MORKEL and H. SCHMALZRIED, Z. Phys. Chem. (N.F.) 32 (1962) 76.

$Fe_2(MoO_4)_3$

196. V. M. ZHUKOVSKII, A. S. ZHUKOVSKAYA, V. N. POPOVA, Tr. Inst. Khim. Ural Nauchn. Tsentr. Akad. Nauk. SSSR 32 (1975) 9.

 $LaFe_2O_3$

197. I. E. SHIMANOVICH, M. M. PAVLYUCHENKO B. O. FILINOV and S. A. PROKUDINA, Vesti: Akad. Navuk. B SSR Ser. Kim. Navuk. 6 (1969) 61. LiNbO₃

- 198. G. D. BOYD, R. V. SCHMIDT and F. F. STORZ, J. Appl. Phys. 48 (1977) 2880.
- 199. V. I. LAPSHIN and A. P. RUMYANTSEV, *Izv.* Akad. Nauk. SSSR Neorg. Mater 12 (1976) 2199; Diffusion Data 15, 188.
- 200. P. J. JORGENSEN and J. W BARTLETT, Report no. Ad-686721 (1969) 38pp; Diffusion Data 4, D30.
- 201. K. SUGII, M. FUKUMA and H. IWASAKI, J. Mater. Sci. 13 (1978) 323.

MgAl₂O₄

- 202. V. S. STUBICAN, C. GRESKOVICH and W. P. WHITNEY Mater Sci. Res. 6 (1972) 55.
- 203. R. LINDNER and A. AKERSTROM, Z. Phys. Chem. 18 (1958) 303 (in German).
- 204. K. ANDO and Y. OISHI, Yogyo Kyokai, Shi. 80 (1972) 324; Diffusion Data 7, 216.
- 205. K. ANDO and Y. OISHI, J. Chem. Phys. 61 (1974) 625.
- 206. Y. OISHI and K. ANDO, ibid 63 (1975) 376.

Mg₂TiO₄

207. S. SHIRASAKI, I. SHINDO, H. HANEDA, M. OGAWA and K. MANABE, Chem. Phys. Lett. 50 (1977) 459.

MnFe₂O₄

208. Z. SIMSA and J. SIMSOVA Czech. J. Phys. 24 (1976) 439; Diffusion Data 10, E93.

Na₂WO₄

209. P. H. BOTTELBERGHS and G. H. J. BROERS, Electrochim. Acta 21 (1976) 719.

NdFeO₃

210. M. M. PAVLYUCHENKO, B. O. FILONOV, B. O. SHIMANOVICH and S. A. PROKUDINA, Dokl. Akad. Nauk. B SSR 24 (1970) 328; Diffusion Data 4, D93.

NiAl₂O₄

- I. N. BELOKUROVA and D. V. IGNATOV, Sov. J. At. Energy 4 (1958) 301; see English Trans. At. Energy 4 (1958) 399; Chem. Abs. 53, 11927i.
- 212. R LINDNER and A. AKERSTROM, Z. Phys. Chem. 6 (1956) 162 (in German).
- 213. Idem, ibid 18 (1958) 303 (in German).

$NiCr_2O_4$

- 214. Idem, ibid 6 (1956) 162 (in German).
- 215. I. N. BELOKUROVA and D. V. IGNATOV, Sov.

At. Energy 4 (1958) 301; see English Trans. At Energy 4 (1958) 399.

- 216. A. MORKEL and H. SCHMALZRIED, Z. Phys. Chem. (N.F.) 32 (1962) 76 (in German).
- 217. R. LINDNER and R. AKERSTROM, Z. Phys. Chem. 18 (1958) 303 (in German).
- 218. W. D. KINGERY, D. C. HILL and R. P. NELSON, J. Amer. Ceram. Soc. 43 (1960) 473.

NiFe₂O₄

- 219. R. H. CONDIT, M. J. BRABERS and C. E. BIRCHENALL, *Trans. Met. Soc. AIME* 218 (1960) 768.
- 220. A. S. LYASHEVICH and I. F. KONONYUK, Vesti. Akad. Navuk. BSSR Ser. Khim. Navuk. 3 (1977) 116; Diffusion Data 17, 132.
- 221. H. M. O'BRYAN and F. V. DIMARCELLO, J. Amer. Ceram. Soc. 53 (1970) 413.

PbTiO₃

 A. P. LYUBIMOV and A. A. KALASHNIKOV and B. NURIDDINOV, Dokl. Akad. Nauk. Uzb. SSR 29 (1972) 24.

$SnZn_2O_4$

223. R. LINDNER and O. ENQVIST, Arkiv. Kemi. 9 (1956) 471; Chem Abs. 50, 15158i.

SrTiO₃

- 224. A. E. PALDINO, L. G. RUBIN and J. S. WAUGH, J. Phys. Chem. Solids 26 (1965) 391.
- 225. D. B. SCHWARZ and H. U. ANDERSON, J. Electrochem. Soc. 122 (1975) 707.
- 226. A. YAMAJI, J. Amer. Ceram. Soc. 58 (1975) 152.
- 227. P. TURLIER, P. BUSSIERE and M. PRETTRE, Compt. Rend. Acad. Sci. Paris 250 (1960) 1649.

$Y_3Fe_5O_{12}$

- 228. A. E. PALDINO, E. A. MAGUIRE and L. G. RUBIN, J. Amer. Ceram. Soc. 47 (1964) 280.
- 229. A. S. LYASHEVICH, I. E. SHIMANOVICH, I. F. KONONYUK and M. B. KOSMYNA, *Zh. Fiz. Khim.* 51 (1977) 2405; *Diffusion Data* 17, 124.

$ZnAl_2O_4$

230. R. LINDNER and A. AKERSTROM, Z. Phys. Chem. 6 (1956) 162 (in German).

ZnCr₂O₄

231. Idem, ibid 6 (1956) 162 (in German).

$ZnFe_2O_4$

- 232. R. LINDNER, Arkiv. Kemi. 4 (1952) 381 (in German).
- 233. Idem, Acta. Chem Scand. 6 (1952) 457 (in German).
- Received 29 August and accepted 1 October 1979.